Achieving a reliable classification of motor imagery (MI) tasks is a major challenge in brain-computer interface (BCI) implementation. The set of relevant and discriminative features plays an important role in the classification scheme. This paper presents a supervised approach to select discriminative features for the enhancement of MI classification using multichannel electroencephalography (EEG) signal. The dimension of multiband feature space is reduced using the feature selection method. Each trial of the multichannel EEG signal representing MI tasks is decomposed into a finite set of narrowband signals. The common spatial pattern-based features are extracted from each subband. The features obtained from the multiple subbands are combined to derive a high-dimensional feature vector. The neighborhood component analysis-based feature selection method is implemented to select the features that are relevant in performing an accurate classification. It is a nearest-neighbor-based approach to learn the feature weights with regularization by maximizing the average leave-one-out classification accuracy over the labeled training data. The selected features are used to train the support vector machine for classification. The features relatively irrelevant to the classification task are discarded, yielding a reduction of feature dimension. The evaluation of the proposed method is performed using BCI Competition III dataset 4a and IV dataset 2b. Both are publicly available datasets and are used as types of benchmark data to evaluate the MI classification algorithm to implement BCI. The obtained simulation results confirm the superiority of the proposed method compared to the recently developed algorithms.INDEX TERMS Brain-computer interface (BCI), electroencephalography (EEG), machine learning, motor imagery (MI), subband decomposition, supervised feature selection.
Analyzing electroencephalography (EEG) signals with machine learning approaches has become an attractive research domain for linking the brain to the outside world to establish communication in the name of the Brain-Computer Interface (BCI). Many researchers have been working on developing successful motor imagery (MI)-based BCI systems. However, they still face challenges in producing better performance with them because of the irrelevant features and high computational complexity. Selecting discriminative and relevant features to overcome the existing issues is crucial. In our proposed work, different feature selection algorithms have been studied to reduce the dimension of multiband feature space to improve MI task classification performance. In the procedure, we first decomposed the MI-based EEG signal into four sets of the narrowband signal. Then a common spatial pattern (CSP) approach was employed for each narrowband to extract and combine effective features, producing a high-dimensional feature vector. Three feature selection approaches, named correlation-based feature selection (CFS), minimum redundancy and maximum relevance (mRMR), and multi-subspace randomization and collaboration-based unsupervised feature selection (SRCFS), were used in this study to select the relevant and effective features for improving classification accuracy. Among them, the SRCFS feature selection approach demonstrated outstanding performance for MI classification compared to other schemes. The SRCFS is based on the multiple k-nearest neighbour graphs method for learning feature weight based on the Laplacian score and then discarding the irrelevant features based on the weight value, reducing the feature dimension. Finally, the selected features are fed into the support vector machines (SVM), linear discriminative analysis (LDA), and multi-layer perceptron (MLP) for classification. The proposed model is evaluated with two benchmark datasets, namely BCI Competition III dataset IVA and dataset IIIB, which are publicly available and mainly used to recognize the MI tasks. The LDA classifier with the SRCFS feature selection algorithm exhibits better performance. It proves the superiority of our proposed study compared to the other state-of-the-art BCI-based MI task classification systems.
Machine translation (MT) is the process of translating text from one language to another using bilingual data sets and grammatical rules. Recent works in the field of MT have popularized sequence-to-sequence models leveraging neural attention and deep learning. The success of neural attention models is yet to be construed into a robust framework for automated English-to-Bangla translation due to a lack of a comprehensive dataset that encompasses the diverse vocabulary of the Bangla language. In this study, we have proposed an English-to-Bangla MT system using an encoder-decoder attention model using the CCMatrix corpus. Our method shows that this model can outperform traditional SMT and RBMT models with a Bilingual Evaluation Understudy (BLEU) score of 15.68 despite being constrained by the limited vocabulary of the corpus. We hypothesize that this model can be used successfully for state-of-the-art machine translation with a more diverse and accurate dataset. This work can be extended further to incorporate several newer datasets using transfer learning techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.