Reliable and automatic segmentation of lung lobes is important for diagnosis, assessment, and quantification of pulmonary diseases. The existing techniques are prohibitively slow, undesirably rely on prior (airway/vessel) segmentation, and/or require user interactions for optimal results. This work presents a reliable, fast, and fully automated lung lobe segmentation based on a progressive dense V-network (PDV-Net). The proposed method can segment lung lobes in one forward pass of the network, with an average runtime of 2 seconds using 1 Nvidia Titan XP GPU, eliminating the need for any prior atlases, lung segmentation or any subsequent user intervention. We evaluated our model using 84 chest CT scans from the LIDC and 154 pathological cases from the LTRC datasets. Our model achieved a Dice score of 0.939 ± 0.02 for the LIDC test set and 0.950 ± 0.01 for the LTRC test set, significantly outperforming a 2D U-net model and a 3D dense V-net. We further evaluated our model against 55 cases from the LOLA11 challenge, obtaining an average Dice score of 0.935-a performance level competitive to the best performing team with an average score of 0.938. Our extensive robustness analyses also demonstrate that our model can reliably segment both healthy and pathological lung lobes in CT scans from different vendors, and that our model is robust against configurations of CT scan reconstruction.
Discriminative models that require full supervision are inefficacious in the medical imaging domain when large labeled datasets are unavailable. By contrast, generative modeling-i.e., learning data generation and classification-facilitates semi-supervised training with limited labeled data. Moreover, generative modeling can be advantageous in accomplishing multiple objectives for better generalization. We propose a novel multi-task learning model for jointly learning a classifier and a segmentor, from chest X-ray images, through semi-supervised learning. In addition, we propose a new loss function that combines absolute KL divergence with Tversky loss (KLTV) to yield faster convergence and better segmentation performance. Based on our experimental results using a novel segmentation model, an Adversarial Pyramid Progressive Attention U-Net (APPAU-Net), we hypothesize that KLTV can be more effective for generalizing multi-tasking models while being competitive in segmentation-only tasks.
The unsupervised training of GANs and VAEs has enabled them to generate realistic images mimicking real-world distributions and perform image-based unsupervised clustering or semi-supervised classification. Combining the power of these two generative models, we introduce Multi-Adversarial Variational autoEncoder Networks (MAVENs), a novel network architecture that incorporates an ensemble of discriminators in a VAE-GAN network, with simultaneous adversarial learning and variational inference. We apply MAVENs to the generation of synthetic images and propose a new distribution measure to quantify the quality of the generated images. Our experimental results using datasets from the computer vision and medical imaging domains-Street View House Numbers, CIFAR-10, and Chest X-Ray datasets-demonstrate competitive performance against state-of-the-art semi-supervised models both in image generation and classification tasks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.