In this study, it is aimed to create an infrastructure that can contribute to the integration of parametric techniques and the joint work of construction and architectural science through an exemplary building design. The ability to respond to changes in data entry in algorithms gives architectural designers the opportunity to optimize structures and form at the same time. At the same time, replacing inputs with parametric techniques saves time in the design process. Otherwise, the design will have to be redesigned from the beginning, depending on the periodic change made in the design. In addition to this, it has been emphasized to build a building design and structure that will provide energy efficiency. In order to create low cost in profit-cost ratios, the possibility of minimizing the inefficient surfaces with the design method by analysing the floats with maximum energy gain due to creating solar plans. The algorithmic design used for this is modelled on the visual and optimizes the geometry to achieve maximum energy efficiency for the building form. To find solar panels suitable for the building geometry design, there is a need to model the actual effect of the sun's rays on the building. One of the key parameters that helped us reach the results of the study is to explore the possibility of using modern guidelines of exemplified stadium designs. This research is based on a method of comparing analysis between two prototype proposals tested to show the effect of the sun on geometry using parametric algorithms. In this case, "Grasshopper 3D" software was used for radiation, daylight hours and shadows to create parametric algorithms in the solar effect simulations process. The purpose of using parametric simulation was to increase energy efficiency for the stadium. Additionally, generative design was used for structural optimization. In this study, generative design was also used to optimize the stadium design structure, which helps to significantly reduce the amount of materials used in the formation of the structure and its costs. In this study, with the help of the Buiding Information Modelling (BIM) program used, solar energy gains affecting the building were investigated and energy gain-loss calculations were made by using environmental data. The obtained data and shell design samples were compared. In the study, Al Shaab stadium in Baghdad was evaluated as an experimental model for modelling the reality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.