This study examined the physical properties of agricultural drought (i.e., intensity, duration, and severity) in Hungary from 1961 to 2010 based on the Standardized Precipitation Index (SPI) and the Standardized Precipitation Evapotranspiration Index (SPEI). The study analyzed the interaction between drought and crop yield for maize and wheat using standardized yield residual series (SYRS), and the crop-drought resilient factor (CDRF). The results of both SPI and SPEI (-3, -6) showed that the western part of Hungary has significantly more prone to agricultural drought than the eastern part of the country. Drought frequency analysis reveals that the eastern, northern, and central parts of Hungary were the most affected regions. Drought analysis also showed that drought was particularly severe in Hungary during 1970–1973, 1990–1995, 2000–2003, and 2007. The yield of maize was more adversely affected than wheat especially in the western and southern regions of Hungary (1961–2010). In general, maize and wheat yields were severely non-resilient (CDRF < 0.8) in the central and western part of the country. The results suggest that drought events are a threat to the attainment of the second Sustainable Development Goals (SDG-2). Therefore, to ensure food security in Hungary and in other parts of the world, drought resistant crop varieties need to be developed to mitigate the adverse effects of climate change on agricultural production.
The Abu-Dabbab area, located in the central part of the Egyptian Eastern Desert, is an active seismic region where micro-earthquakes (≈ML < 2.0) are recorded regularly. Earthquake epicenters are concentrated along an ENE–WSW trending pattern. In this study, we used morphological indexes, including the valley floor width-to-valley floor height ratio (Vf), mountain front sinuosity (Smf), the asymmetry factor index (Af), the drainage basin shape index (Bs), the stream length–gradient index (SL), hypsometric integral (Hi) water drainage systems, and a digital elevation model analysis, to identify the role of tectonics. These indexes were used to define the relative tectonic activity index (RTAI), which can be utilized to distinguish low (RTAI < 1.26), moderate (RTAI = 1.26–1.73), and high (RTAI > 1.73) tectonic activity signals all over the study area. Firstly, our results indicate low to medium tectonic activity and general anomaly patterns detected along the major tectonic zones of the study area. Secondly, based on most of the low to medium tectonic activity distributed in the study area and the detected anomalies, we discuss two potential drivers of the seismicity in the Abu-Dabbab area, which are fault-controlled and deep-rooted activities.
Egypt is highly exposed to flash flood hazards, particularly in Sinai Peninsula and along the Red Sea coast, causing sudden and huge damages to constructions and huge losses in human lives during a very short time. This paper investigates the dominant characterization of morphometrical features and their relationships with the hydrological behaviors along an important strip of the western Red Sea coast. The study focuses on analyzing the October 2009 and 2019 storm events along the coastal area between EL-Qussier and Marsa Alam in order to intiate a preliminary flood risk assessment model. Morphometric features along the entire study zone provide a complete scenario of the nature of the catchments and sub-catchments development. Numerous morphometric indexes such as catchments geometry, areal indexes, linear indexes, and relief indexes were examined through processing different sets of data. Modern techniques such as remote sensing and geospatial analysis were applied to process different spatial and spectral data. The hydrological model (HEC-HMS) in the WMS software was run to delineate the catchments and sub-catchments and extract the peak flow hydrograph curves for the main catchments. The results of the water amounts and peak flow were calculated using the SCS unit hydrograph approach. The hydrological characteristics of the major catchments reveal conditions for moderate levels of flash flooding. The study ended with a number of recommendations that could minimize the negative effects of the flash flood hazards.
During the last three decades, Delhi has witnessed extensive and rapid urban expansion in all directions, especially in the East South East zone. The total built-up area has risen dramatically, from 195.3 sq. km to 435.1 sq. km, during 1989–2020, which has led to habitat fragmentation, deforestation, and difficulties in running urban utility services effectively in the new extensions. This research aimed to simulate urban expansion in Delhi based on various driving factors using a logistic regression model. The recent urban expansion of Delhi was mapped using LANDSAT images of 1989, 2000, 2010, and 2020. The urban expansion was analyzed using concentric rings to show the urban expansion intensity in each direction. Nine driving factors were analyzed to detect the influence of each factor on the urban expansion process. The results revealed that the proximity to urban areas, proximity to main roads, and proximity to medical facilities were the most significant factors in Delhi during 1989–2020, where they had the highest regression coefficients: −0.884, −0.475, and −0.377, respectively. In addition, the predicted pattern of urban expansion was chaotic, scattered, and dense on the peripheries. This pattern of urban expansion might lead to further losses of natural resources. The relative operating characteristic method was utilized to assess the accuracy of the simulation, and the resulting value of 0.96 proved the validity of the simulation. The results of this research will aid local authorities in recognizing the patterns of future expansion, thus facilitating the implementation of effective policies to achieve sustainable urban development in Delhi.
In the last few decades, agricultural drought (Ag.D) has seriously affected crop production and food security worldwide. In Hungary, little research has been carried out to assess the impacts of climate change, particularly regarding droughts and crop production, and especially on regional scales. Thus, the main aim of this study was to evaluate the impact of agricultural drought on sunflower production across Hungary. Drought data for the Standardized Precipitation Index (SPI) and the Standardized Precipitation Evapotranspiration Index (SPEI) were collected from the CARBATCLIM database (1961–2010), whereas sunflower production was collected from the Hungarian national statistical center (KSH) on regional and national scales. To address the impact of Ag.D on sunflower production, the sequence of standardized yield residuals (SSYR) and yield losses YlossAD was applied. Additionally, sunflower resilience to Ag.D (SRAg.D) was assessed on a regional scale. The results showed that Ag.D is more severe in the western regions of Hungary, with a significantly positive trend. Interestingly, drought events were more frequent between 1990 and 2010. Moreover, the lowest SSYR values were reported as −3.20 in the Hajdu-Bihar region (2010). In this sense, during the sunflower growing cycle, the relationship between SSYR and Ag.D revealed that the highest correlations were recorded in the central and western regions of Hungary. However, 75% of the regions showed that the plantation of sunflower is not resilient to drought where SRAg.Dx < 1. To cope with climate change in Hungary, an urgent mitigation plan should be implemented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.