Objectives To determine if the depth of corticotomy done with the piezoelectric knife could play a role in the intensity of the regional acceleratory phenomenon (RAP). Materials and Methods Eighteen Sprague-Dawley rats were divided into two groups: untreated (3 rats) and treatment (15 rats). In the treatment group, a split-model design was used. The right tibia received transcortical (deep) penetrations with the piezoelectric knife, while intracortical (shallow) penetrations were performed on the left tibia of the same animal. The rats were euthanized at day 1, 3, 7, 14, and 28. Cone-beam computed tomography scans were taken for each sample and then assessed by histological analysis. Results Higher amounts of osteoclastic activity and new collagen formation were observed in the deep penetration group when compared with the shallow penetration group. The former peaked at day 14 for both groups (1.53% ± 0.01% vs 0.03% ± 0.0004%, respectively), and the latter peaked at day 28 (0.65 × 106 ± 0.01 vs 0.08 × 106 ± 0.0008, respectively). Conclusions Within the limitations of this study, it appears that the intensity of the RAP in the rat is corticotomy depth dependent. This is to be kept in mind when decorticating the bone during surgically facilitated orthodontic procedures.
TNF-a is an important cytokine mediator of inflammation which suggests that inhibition of TNF activity may provide potential for clinical application. Recent data indicated that treatment of both human and mouse cells with Kavain significantly modulates P. gingivalis- and LPS-induced TNF-α expression. In order to obtain a selective analog with optimized biological activity and structural physico-chemical properties of Kavain, Kavain analogs were designed and synthesized and found one Kavain analogue (named Kav001) that is similar to Kavain but soluble and does not induce a significant toxicity. Both studies in vitro and in vivo treatment by Kav001 showed stronger biological function as compared to Kavain. Furthermore, most mouse bone marrow macrophages up-regulated Bcl-6 while down-regulating LITAF expression after treatment with Kav001 for 36 h. Consequently, this led to an extension of macrophage pseudopods due to its immune response to P.g. infection/LPS stimulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.