Genome data is a subject of study for both biology and computer science since the start of Human Genome Project in 1990. Since then, genome sequencing for medical and social purposes becomes more and more available and affordable. Genome data can be shared on public websites or with service providers. However, this sharing compromises the privacy of donors even under partial sharing conditions. We mainly focus on the liability aspect ensued by unauthorized sharing of these genome data. One of the techniques to address the liability issues in data sharing is watermarking mechanism. To detect malicious correspondents and service providers (SPs) -whose aim is to share genome data without individuals' consent and undetected-, we propose a novel watermarking method on sequential genome data using belief propagation algorithm. In our method, we have two criteria to satisfy. (i) Embedding robust watermarks so that the malicious adversaries can not temper the watermark by modification and are identified with high probability (ii) Achieving ε-local differential privacy in all data sharings with SPs. For the preservation of system robustness against single SP and collusion attacks, we consider publicly available genomic information like Minor Allele Frequency, Linkage Disequilibrium, Phenotype Information and Familial Information. Our proposed scheme achieves 100% detection rate against the single SP attacks with only 3% watermark length. For the worst case scenario of collusion attacks (50% of SPs are malicious), 80% detection is achieved with 5% watermark length and 90% detection is achieved with 10% watermark length. For all cases, ε's impact on precision remained negligible and high privacy is ensured.
Motivation Genome data is a subject of study for both biology and computer science since the start of the Human Genome Project in 1990. Since then, genome sequencing for medical and social purposes becomes more and more available and affordable. Genome data can be shared on public websites or with service providers. However, this sharing compromises the privacy of donors even under partial sharing conditions. We mainly focus on the liability aspect ensued by the unauthorized sharing of these genome data. One of the techniques to address the liability issues in data sharing is the watermarking mechanism. Results To detect malicious correspondents and service providers (SPs) -whose aim is to share genome data without individuals’ consent and undetected-, we propose a novel watermarking method on sequential genome data using belief propagation algorithm. In our method, we have two criteria to satisfy. (i) Embedding robust watermarks so that the malicious adversaries can not temper the watermark by modification and are identified with high probability (ii) Achieving ε-local differential privacy in all data sharings with SPs. For the preservation of system robustness against single SP and collusion attacks, we consider publicly available genomic information like Minor Allele Frequency, Linkage Disequilibrium, Phenotype Information and Familial Information. Our proposed scheme achieves 100% detection rate against the single SP attacks with only 3% watermark length. For the worst case scenario of collusion attacks (50% of SPs are malicious), 80% detection is achieved with 5% watermark length and 90% detection is achieved with 10% watermark length. For all cases, the impact of ε on precision remained negligible and high privacy is ensured. Availability https://github.com/acoksuz/PPRW_SGD_BPLDP Supplementary information Supplementary data are available at Bioinformatics online.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.