Problem statement:Research on Smooth Support Vector Machine (SSVM) is an active field in data mining. Many researchers developed the method to improve accuracy of the result. This study proposed a new SSVM for classification problems. It is called Multiple Knot Spline SSVM (MKS-SSVM). To evaluate the effectiveness of our method, we carried out an experiment on Pima Indian diabetes dataset. The accuracy of previous results of this data still under 80% so far. Approach: First, theoretical of MKS-SSVM was presented. Then, application of MKS-SSVM and comparison with SSVM in diabetes disease diagnosis were given. Results: Compared to the SSVM, the proposed MKS-SSVM showed better performance in classifying diabetes disease diagnosis with accuracy 93.2%. Conclusion: The results of this study showed that the MKS-SSVM was effective to detect diabetes disease diagnosis and this is very promising compared to the previously reported results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.