Ceramic tiling industry has become one of Turkey's fastest growing industries due to the outstanding achievements of Turkish ceramic producers with respect to producing high quality products with lower costs than their equivalents worldwide. Conversely high costs of the end product of Turkish building industry in general show that there is an important problem with the productivity and quality of construction crews. That's why most construction firms begin to realize the need for a detailed research on the factors affecting construction crew productivity. The purpose of this study is thus to classify the factors that affect the productivity of ceramic tiling crews by using data mining methods. To achieve the purpose of our study, a systematic time study was undertaken with ceramic tiling crews in Turkey. Daily productivity values of ceramic tiling crews were collected together with the information related with the factors like the crew size, age and experience of crewmembers. Collected data was classified by using Weka program. The outlier values were first removed from the dataset and decision tree method was used to classify the new dataset. Decision tree method was preferred due to its easiness of use and rapidness in classification. Apriori algorithm, which is the mostly preferred association algorithm in previous studies, was also used to highlight the general trend in the dataset.
Günümüzde, farklı sektör alanlarındaki birçok disiplini destekleyecek çeşitli teknolojiler mevcuttur. Bu sektörlerden birisi de bilgi teknolojileri kullanımı konusunda diğer sektörlere göre geride görünen ama son zamanlarda bilgi teknolojileri kullanımının arttığı inşaat sektörüdür. Bu bilgi teknolojileri, görselleştirmeden bilgisayar destekli tasarıma, proje yönetiminden bina işletmesine kadar çok değişik alanlarda kullanılmaktadır. Bu çalışmada inşaat sektöründe son yıllarda kullanılmaya başlanan ve ilerde kullanılması olası olan bilgisayar yazılımları, bilgi teknolojileri ve uygulamaları incelenmiş, bu konudaki gelişmeler açıklanmış ve örnekler verilmiştir.
Construction is one of the most energy-intensive sectors in the world. To scale down the energy demand of the building sector, some changes must be made. Formal exemplifications of this need can be seen in recent changes in the law in different countries. The energy identity/performance certificate contains requirements about buildings' energy consumption in Turkey, and the Energy Performance Regulation in Buildings is mandatory from 01.01.2020. Moreover, it aimed to measure the level of awareness of individuals in saving energy. Face-to-face surveys were conducted with the use of a questionnaire with individuals residing in Adana's pilot region on the awareness of similar issues such as green buildings and energy efficiency, especially energy identity/performance certificate. The survey results were prepared in Microsoft Excel, and the reliability of the survey questions was measured with the help of the SPSS (Statistical Package for the Social Sciences) program. The analysis of the data was obtained from WEKA (Waikato Environment for Knowledge Analysis). Association rule extraction, which is one of the data mining methods, was used in the analysis. Based on the findings, it was seen that most of the individuals did not have enough information about the topics in the survey.
Günümüz inşaat sektöründe çalışanların verimliklerinin tespiti işletmelerin başarısıyla doğrudan ilgilidir. Artan rekabet koşullarında, çalışanlarının ihtiyaçları, konumları, etkinlikleri vb. parametreleri ölçmeyen işletmeler farkında olmasalar da çeşitli kayıplara uğramaktadır. Çalışanları motive edip verimliliklerini artıracak liderlik tiplerinin saptanması, insan unsurunun ön planda olduğu inşaat işletmeleri açısından büyük öneme sahiptir. Bu amaçla, Adana ili özelinde iş yapan, yapı üreten, inşaat işletmelerinde görev yapan mühendis konumundaki kişilerle bu kişilerin hiyerarşik olarak alt kademesinde çalışanların verimlilik ilişkisi incelenmiştir. Bu kapsamda bu çalışmada, şantiye şefleri ve çalışanlarına çift yönlü uygulanan MLQ anketi ile ilgili bilgi verilerek çalışmanın devamında bu anket verileri doğrultusunda Veri Madenciliği metotlarından Apriori Algoritması ile kural çıkarımları yapılacak, sınıflandırma algoritmaları kullanılarak da liderlik ve motivasyonlar/verimlilikler sınıflandırılacaktır. Bu sayede liderlik tiplerinin çalışan motivasyonu/verimlilikleri üzerindeki etkisi analiz edilecektir. Böylelikle çalışma tamamlandığında, Adana ilindeki inşaat işletmelerinin mühendis liderliği-çalışan motivasyonu/verimliği alanında kullanılabilecek en uygun kuralların çıkarımının oluşturulması ve sektöre sunulması amaçlanmaktadır.
Datasets have relevant and irrelevant features whose evaluations are fundamental for classification or clustering processes. The effects of these relevant features make classification accuracy more accurate and stable. At this point, optimization methods are used for feature selection process. This process is a feature reduction process finding the most relevant feature subset without decrement of the accuracy rate obtained by original feature sets. Varied nature inspiration-based optimization algorithms have been proposed as feature selector. The density of data in construction projects and the inability of extracting these data cause various losses in field studies. In this respect, the behaviors of leaders are important in the selection and efficient use of these data. The objective of this study is implementing Artificial Bee Colony (ABC) algorithm as a feature selection method to predict the leadership perception of the construction employees. When Random Forest, Sequential Minimal Optimization and K-Nearest Neighborhood (KNN) are used as classifier, 84.1584% as highest accuracy result and 0.805 as highest F-Measure result were obtained by using KNN and Random Forest classifier with proposed ABC Algorithm as feature selector. The results show that a nature inspiration-based optimization algorithm like ABC algorithm as feature selector is satisfactory in prediction of the Construction Employee’s Leadership Perception.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.