Salinity impedes soil and crop productivity in over 900 million ha of arable lands worldwide due to the excessive accumulation of salt (NaCl). To utilize saline soils in agriculture, halophytes (salt-tolerant plants) are commonly cultivated. However, most food crops are glycophytes (salt-sensitive). Thus, to enhance the productivity of saline soils, gypsum (CaSO4·2H2O) as well as bio-organic (combined use of organic materials, such as compost and straw with the inoculation of beneficial microbes) amendments have been continuously recognized to improve the biological, physical and chemical properties of saline soils. CaSO4·2H2O regulates the exchange of sodium (Na+) for calcium (Ca2+) on the clay surfaces, thereby increasing the Ca2+/Na+ ratio in the soil solution. Intracellularly, Ca2+ also promotes a higher K+/Na+ ratio. Simultaneously, gypsum furnishes crops with sulfur (S) for enhanced growth and yield through the increased production of phytohormones, amino acids, glutathione and osmoprotectants, which are vital elicitors in plants’ responses to salinity stress. Likewise, bio-organic amendments improve the organic matter and carbon content, nutrient cycling, porosity, water holding capacity, soil enzyme activities and biodiversity in saline soils. Overall, the integrated application of gypsum and bio-organic amendments in cultivating glycophytes and halophytes is a highly promising strategy in enhancing the productivity of saline soils.
Drought and salinity stress severely inhibits the growth and productivity of crop plants by limiting their physiological processes. Silicon (Si) supplementation is considerd as one of the promising approaches to alleviate abiotic stresses such as drought and salinity. In the present study, a field experiment was conducted over two successive growth seasons (2019-20) to investigate the effect of foliar application of Si at two concentrations (1 and 2 kg Si ha-1) on the growth, yield and physiological parameters of three maize cultivars (ES81, ES83, and ES90) under three levels of irrigation salinity) [1000 (WS1), 2000 (WS2) and 3000 (WS3) mg L-1NaCl]. In this study, A trickle irrigation system was used. Si application significantly mitigated the harsh effects of salinity on growth and yield components of maize, which increased at all concentrations of Si. In irrigation with S3 salinity treatment, grain yield was decreased by 32.53%, however, this reduction was alleviated (36.19%) with the exogenous foliar application of Si at 2 kg Si ha-1. At salinity levels, Si application significantly increased maize grain yield (t ha-1) to its maximum level under WS of 1000 mg L-1, and its minimum level (Add value) under WS of 3000 mg L-1. Accordingly, the highest grain yield increased under Si application of 2 kg Si ha-1, regardless of salinity level and the cultivar ES81 achieved the highest level of tolerance against water salinity treatments. In conclusion, Application of Si at 2 kg Si ha-1 as foliar treatment worked best as a supplement for alleviating the adverse impacts of irrigation water salinity on the growth, physiological and yield parameters of maize.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.