In the last few years, the cloud-computing paradigm experienced a considerable growth, making it the de-facto technology fueling almost all major online services. Nowadays, Universities have become more reliant on Information and Communication Technology (ICT) to provide educational services for their stakeholders. While most of the Universities in Europe and North America has harnessed the capabilities of cloud services to provide large scale flexibly electronic educational services. In Saudi Arabia, Most of the Universities are start-ups with limited IT Staff and amateur ICT infrastructure. Therefore, migrating their ICT services to cloud computing could deliver substantial benefits in the form of rich education content, increased efficiency, and agility that can be used to transform higher education in Saudi universities. However, migrating the Universities resources to third party platforms as cloud computing has pitfalls need to be considered carefully prior to the transition. Therefore, to successfully migrate to the cloud in the Saudi universities context, it is essential to identify the enabler factors that contribute toward a successful migration to the cloud environment in the higher education settings. Therefore, this research paper aims to propose a framework to investigate technological and organizational success factors that enable the migration process of the Saudi Universities' ICT to the cloud environment.
Wastewater management is a mechanism that is used to extract and refine pollutants from wastewater or drainage that can be recycled to the water supply with minimal environmental effects. New methods and techniques are required to ensure safe and smart wastewater management systems in smart cities because of the present deteriorating environmental state. Wireless sensor networks and the Internet of Things (IoT) represent promising wastewater treatment technologies. The elaborated literature survey formulates a conceptual framework with an Internet of Things (IoT)-based wastewater management system in smart cities (IoT-WMS) using blockchain technology. Blockchain technology is now being used to store information to develop an incentive model for encouraging the reuse of wastewater. Concerning the quality and quantity of recycled wastewater, tokens are issued to households/industries in smart cities. Nevertheless, this often encourages tampering with the information from which these tokens are awarded to include certain rewards. Anomaly detector algorithms are used to identify the possible IoT sensor data which has been tampered with by intruders. The model employs IoT sensors together with quality metrics to measure the amount of wastewater produced and reused. The simulation analysis shows that the proposed method achieves a high wastewater recycling rate of 96.3%, an efficiency ratio of 88.7%, a low moisture content ratio of 32.4%, an increased wastewater reuse of 90.8%, and a prediction ratio of 92.5%.
Recently, medical technologies have developed, and the diagnosis of diseases through medical images has become very important. Medical images often pass through the branches of the network from one end to the other. Hence, high-level security is required. Problems arise due to unauthorized use of data in the image. One of the methods used to secure data in the image is encryption, which is one of the most effective techniques in this field. Confusion and diffusion are the two main steps addressed here. The contribution here is the adaptation of the deep neural network by the weight that has the highest impact on the output, whether it is an intermediate output or a semi-final output in additional to a chaotic system that is not detectable using deep neural network algorithm. The colour and grayscale images were used in the proposed method by dividing the images according to the Region of Interest by the deep neural network algorithm. The algorithm was then used to generate random numbers to randomly create a chaotic system based on the replacement of columns and rows, and randomly distribute the pixels on the designated area. The proposed algorithm evaluated in several ways, and compared with the existing methods to prove the worth of the proposed method.
Skin cancer is one of the most severe forms of the disease, and it can spread to other parts of the body if not detected early. Therefore, diagnosing and treating skin cancer patients at an early stage is crucial. Since a manual skin cancer diagnosis is both time-consuming and expensive, an incorrect diagnosis is made due to the high similarity between the various skin cancers. Improved categorization of multiclass skin cancers requires the development of automated diagnostic systems. Herein, we propose a fully automatic method for classifying several skin cancers by fine-tuning the deep learning models VGG16, ResNet50, and ResNet101. Prior to model creation, the training dataset should undergo data augmentation using traditional image transformation techniques and Generative Adversarial Networks (GANs) to prevent class imbalance issues that may lead to model overfitting. In this study, we investigate the feasibility of creating dermoscopic images that have a realistic appearance using Conditional Generative Adversarial Network (CGAN) techniques. Thereafter, the traditional augmentation methods are used to augment our existing training set to improve the performance of pre-trained deep models on the skin cancer classification task. This improved performance is then compared to the models developed using the unbalanced dataset. In addition, we formed an ensemble of finely tuned transfer learning models, which we trained on balanced and unbalanced datasets. These models were used to make predictions about the data. With appropriate data augmentation, the proposed models attained an accuracy of 92% for VGG16, 92% for ResNet50, and 92.25% for ResNet101, respectively. The ensemble of these models increased the accuracy to 93.5%. A comprehensive discussion on the performance of the models concluded that using this method possibly leads to enhanced performance in skin cancer categorization compared to the efforts made in the past.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.