The composition and lifetime of sea spray aerosols are driven by the molecular and biological complexity of the air−seawater interface. We explore in situ the surface properties of marine algal bloom diatom monocultures by utilizing surface techniques of Brewster angle microscopy (BAM) imaging, vibrational sum-frequency generation (SFG) spectroscopy, and infrared reflection−absorption spectroscopy (IRRAS). Over the course of the bloom, the marine algae produce surface-active biogenic molecules that temporally partition to the topmost interfacial layers and are selectively probed through surface imaging and spectroscopic measurements. BAM images show morphological structural changes and heterogeneity in the interfacial films with increasing density of surface-active biogenic molecules. Film thickness calculations quantified the average surface thickness of a productive bloom over time. The image results reveal an ∼5 nm thick surface region in the late stages of the bloom, which correlates with typical sea surface nanolayer thicknesses. Our surface-specific SFG spectroscopy results show significant diminishing in the intensity of the dangling OH bond of surface water molecules consistent with organic molecules partitioning and replacing water at the air−seawater interface as the algal bloom progresses. Interestingly, we observe a new broad band appear between 3500 and 3600 cm −1 in the late stages of the bloom that is attributed to weak hydrogen bonding interactions of water to the surface-active biogenic matter. IRRAS confirms the presence of organic molecules at the surface as we observe an increasing intensity of vibrational alkyl modes and the appearance of a proteinaceous amide band over time. Our work shows the often overlooked but vast potential of tracking changes in the interfacial regime of small-scale laboratory marine algal blooms. By coupling surface imaging and vibrational spectroscopies to complex, time-evolving, marine-relevant systems, we provide additional insight into unraveling the temporal complexity of sea spray aerosol compositions.
The results of an experimental investigation of the flow over a pickup truck are presented. The main objectives of the study are to gain a better understanding of the flow structure in near wake region, and to obtain a detailed quantitative data set for validation of numerical simulations of this flow. Experiments were conducted at moderate Reynolds numbers (~3×10 5 ) in the open return tunnel at the University of Michigan. Measured quantities include: the mean pressure on the symmetry plane, unsteady pressure in the bed, and Particle Image Velocimetry (PIV) measurements of the flow in the near wake. The unsteady pressure results show that pressure fluctuations in the forward section of the bed are small and increase significantly at the edge of the tailgate. Pressure fluctuation spectra at the edge of the tailgate show a spectral peak at a Strouhal number of 0.07 and large energy content at very low frequency. The velocity field measurements in the symmetry plane show that shear layers form at the top of the cab and the underbody flow region. The cab shear layer evolves more slowly than the underbody flow shear layer and does not interact strongly with the tailgate for the present geometry. Behind the tailgate there is no recirculating flow region in the symmetry plane believed to be due to downwash from streamwise vorticity in the near wake. There are small recirculating regions on the sides of the tailgate symmetry plane extending approximately one tailgate height downstream.
A shared aperture 2-element multiple-input-multiple-output (MIMO) antenna design for 5G standards is presented in this study, one which uses the same radiating structure to cover both the sub-6GHz and millimeter-wave (millimeter-wave) bands. The proposed antenna comprises four concentric pentagonal slots that are uniformly separated from one another. For the sub-6GHz band, the antenna is excited by a single open-end microstrip transmission-line, while a 1 × 8 power divider (PD) connected via a T-junction structure excites the millimeter-wave band. Both the sub-6GHz and mm-wave antennas operate in a MIMO configuration. The proposed antenna design was fabricated on a 120 × 60 mm2 substrate with an edge-to-edge distance of 49 mm. The proposed sub-6GHz antenna covers the following frequency bands: 4–4.5 GHz, 3.1–3.8 GHz, 2.48–2.9 GHz, 1.82–2.14 GHz, and 1.4–1.58 GHz, while the millimeter-wave antenna operates at 28 GHz with at least 500 MHz of bandwidth. A complete antenna analysis is provided via a step-by-step design procedure, an equivalent circuit diagram showing the operation of the shared aperture antenna, and current density analysis at both millimeter-wave and sub-6GHz bands. The proposed antenna design is also characterized in terms of MIMO performance metrics with a good MIMO operation with maximum envelop correlation coefficient value of 0.113. The maximum measured gain and efficiency values obtained were 91% and 8.5 dBi over the entire band of operation. The antenna is backward compatible with 4G bands and also encompasses the sub-6GHz and 28 GHz bands for future 5G wireless communcation systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.