Partial information decomposition (PID) of the multivariate mutual information describes the distinct ways in which a set of source variables contains information about a target variable. The groundbreaking work of Williams and Beer has shown that this decomposition can not be determined from classic information theory without making additional assumptions, and several candidate measures have been proposed, often drawing on principles from related fields such as decision theory. None of these measures is differentiable with respect to the underlying probability mass function. We here present a novel measure that draws only on principles linking the local mutual information to exclusion of probability mass. This principle is foundational to the original definition of the mutual information by Fano. We reuse this principle to define measure of shared information that is differentiable and is well-defined for individual realizations of the random variables. We show that the measure can be interpreted as a local mutual information with the help of an auxiliary variable. We also show that it has a meaningful Moebius inversion on a redundancy lattice and obeys a target chain rule. We give an operational interpretation of the measure based on the decisions an agent should take if given only the shared information.
Partial information decomposition (PID) seeks to decompose the multivariate mutual information that a set of source variables contains about a target variable into basic pieces, the so-called ‘atoms of information’. Each atom describes a distinct way in which the sources may contain information about the target. For instance, some information may be contained uniquely in a particular source, some information may be shared by multiple sources and some information may only become accessible synergistically if multiple sources are combined. In this paper, we show that the entire theory of PID can be derived, firstly, from considerations of part-whole relationships between information atoms and mutual information terms, and secondly, based on a hierarchy of logical constraints describing how a given information atom can be accessed. In this way, the idea of a PID is developed on the basis of two of the most elementary relationships in nature: the part-whole relationship and the relation of logical implication. This unifying perspective provides insights into pressing questions in the field such as the possibility of constructing a PID based on concepts other than redundant information in the general n-sources case. Additionally, it admits of a particularly accessible exposition of PID theory.
Bertschinger, Rauh, Olbrich, Jost, and Ay (Entropy, 2014) have proposed a definition of a decomposition of the mutual information MI(X : Y, Z) into shared, synergistic, and unique information by way of solving a convex optimization problem. In this paper, we discuss the solution of their Convex Program from theoretical and practical points of view.
Makkeh, Theis, and Vicente found in [8] that Cone Programming model is the most robust to compute the Bertschinger et al. partial information decompostion (BROJA PID) measure [1]. We developed a production-quality robust software that computes the BROJA PID measure based on the Cone Programming model. In this paper, we prove the important property of strong duality for the Cone Program and prove an equivalence between the Cone Program and the original Convex problem. Then describe in detail our software and how to use it.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.