Atypical antipsychotics increase the risk of diabetes and cardiovascular disease through their side effects of insulin resistance and weight gain. The populations for which atypical antipsychotics are used carry a baseline risk of metabolic dysregulation prior to medication which has made it difficult to fully understand whether atypical antipsychotics cause insulin resistance and weight gain directly. The purpose of this work was to conduct a systematic review and meta-analysis of atypical antipsychotic trials in healthy volunteers to better understand their effects on insulin sensitivity and weight gain. Furthermore, we aimed to evaluate the occurrence of insulin resistance with or without weight gain and with treatment length by using subgroup and meta-regression techniques. Overall, the meta-analysis provides evidence that atypical antipsychotics decrease insulin sensitivity (standardized mean difference=-0.437, p<0.001) and increase weight (standardized mean difference=0.591, p<0.001) in healthy volunteers. It was found that decreases in insulin sensitivity were potentially dependent on treatment length but not weight gain. Decreases in insulin sensitivity occurred in multi-dose studies <13days while weight gain occurred in studies 14days and longer (max 28days). These findings provide preliminary evidence that atypical antipsychotics cause insulin resistance and weight gain directly, independent of psychiatric disease and may be associated with length of treatment. Further, well-designed studies to assess the co-occurrence of insulin resistance and weight gain and to understand the mechanisms and sequence by which they occur are required.
Context. Skeletal muscle insulin resistance is one of the primary contributors of type 2 diabetes (T2D). Metformin is the first-line drug for the treatment of T2D. The primary effects of metformin include decreasing glucose production in the liver and decreasing insulin resistance in the skeletal muscle. However, the molecular mechanism of metformin’s action in skeletal muscle is not well understood. Protein phosphatase 2A (PP2A), a major serine/threonine protein phosphatase, plays a pivotal role in cellular processes, such as signal transduction, cell proliferation, and apoptosis, and acts through dephosphorylating key signaling molecules such as AKT and AMPK. However, whether PP2A plays a role in metformin-induced insulin sensitivity improvement in human skeletal muscle cells remains to be elucidated. Objective. To investigate if PP2A plays a role in metformin-induced insulin sensitivity improvement in human skeletal muscle cells. Participants. Eight lean insulin-sensitive nondiabetic participants (4 females and 4 males; age: 21.0 ± 1.0 years; BMI: 22.0 ± 0.7 kg / m 2 ; 2-hour OGTT: 97.0 ± 6.0 mg / dl ; HbA1c: 5.3 ± 0.1 % ; fasting plasma glucose: 87.0 ± 2.0 mg / dl ; M value; 11.0 ± 1.0 mg / kgBW / min ). Design. A hyperinsulinemic-euglycemic clamp was performed to assess insulin sensitivity in human subjects, and skeletal muscle biopsy samples were obtained. Primary human skeletal muscle cells (shown to retain metabolic characteristics of donors) were cultured from these muscle biopsies that included 8 lean insulin-sensitive participants. Cultured cells were expanded, differentiated into myotubes, and treated with 50 μM metformin for 24 hours before harvesting. PP2Ac activity was measured by a phosphatase activity assay kit (Millipore) according to the manufacturer’s protocol. Results. The results indicated that metformin significantly increased the activity of PP2A in the myotubes for all 8 lean insulin-sensitive nondiabetic participants, and the average fold increase is 1.54 ± 0.11 ( P < 0.001 ). Conclusions. These results provided the first evidence that metformin can activate PP2A in human skeletal muscle cells derived from lean healthy insulin-sensitive participants and may help to understand metformin’s action in skeletal muscle in humans.
Context Obesity-related insulin resistance (OIR) is one of the main contributors to type 2 diabetes and other metabolic diseases. Protein kinases are implicated in insulin signaling and glucose metabolism. Molecular mechanisms underlying OIR involving global kinase activities remain incompletely understood. Objective To investigate abnormal kinase activity associated with OIR in human skeletal muscle. Design Utilization of stable isotopic labeling-based quantitative proteomics combined with affinity-based active enzyme probes to profile in vivo kinase activity in skeletal muscle from lean control (Lean) and OIR participants. Participants A total of 16 nondiabetic adults, 8 Lean and 8 with OIR, underwent hyperinsulinemic-euglycemic clamp with muscle biopsy. Results We identified the first active kinome, comprising 54 active protein kinases, in human skeletal muscle. The activities of 23 kinases were different in OIR muscle compared with Lean muscle (11 hyper- and 12 hypo-active), while their protein abundance was the same between the 2 groups. The activities of multiple kinases involved in adenosine monophosphate–activated protein kinase (AMPK) and p38 signaling were lower in OIR compared with Lean. On the contrary, multiple kinases in the c-Jun N-terminal kinase (JNK) signaling pathway exhibited higher activity in OIR vs Lean. The kinase-substrate–prediction based on experimental data further confirmed a potential downregulation of insulin signaling (eg, inhibited phosphorylation of insulin receptor substrate-1 and AKT1/2). Conclusions These findings provide a global view of the kinome activity in OIR and Lean muscle, pinpoint novel specific impairment in kinase activities in signaling pathways important for skeletal muscle insulin resistance, and may provide potential drug targets (ie, abnormal kinase activities) to prevent and/or reverse skeletal muscle insulin resistance in humans.
Overall, our findings suggest that the AKT gene is differentially methylated in the skeletal muscle of patients taking atypical antipsychotics or mood stabilizer maintenance therapy. These results may direct future approaches to reduce the harmful adverse effects of atypical antipsychotic treatment.
Skeletal muscle insulin resistance is a major contributor to type-2 diabetes (T2D). Pioglitazone is a potent insulin sensitizer of peripheral tissues by targeting peroxisome proliferator-activated receptor gamma. Pioglitazone has been reported to protect skeletal muscle cells from lipotoxicity by promoting fatty acid mobilization and insulin signaling. However, it is unclear whether pioglitazone increases insulin sensitivity through changes in protein−protein interactions involving protein phosphatase 2A (PP2A). PP2A regulates various cell signaling pathways such as insulin signaling. Interaction of the catalytic subunit of PP2A (PP2Ac) with protein partners is required for PP2A specificity and activity. Little is known about PP2Ac partners in primary human skeletal muscle cells derived from lean insulin-sensitive (Lean) and obese insulin-resistant (OIR) participants. We utilized a proteomics method to identify PP2Ac interaction partners in skeletal muscle cells derived from Lean and OIR participants, with or without insulin and pioglitazone treatments. In this study, 216 PP2Ac interaction partners were identified. Furthermore, 26 PP2Ac partners exhibited significant differences in their interaction with PP2Ac upon insulin treatments between the two groups. Multiple pathways and molecular functions are significantly enriched for these 26 interaction partners, such as nonsense-mediated decay, metabolism of RNA, RNA binding, and protein binding. Interestingly, pioglitazone restored some of these abnormalities. These results provide differential PP2Ac complexes in Lean and OIR in response to insulin/pioglitazone, which may help understand molecular mechanisms underpinning insulin resistance and the insulin-sensitizing effects of pioglitazone treatments, providing multiple targets in various pathways to reverse insulin resistance and prevent and/or manage T2D with less drug side effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.