This paper presents a new approach to the multi-modal medical image fusion based on Principal Component Analysis (PCA) and Singular value decomposition (SVD).The main objective of the proposed approach is to facilitate its implementation on a hardware unit, so it works effectively at run time. To evaluate the presented approach, it was tested in fusing four different cases of a registered CT and MRI images. Eleven quality metrics (including Mutual Information and Universal Image Quality Index) were used in evaluating the fused image obtained by the proposed approach, and compare it with the images obtained by the other fusion approaches. In experiments, the quality metrics shows that the fused image obtained by the presented approach has better quality result and it proved effective in medical image fusion especially in MRI and CT images. It also indicates that the paper approach had reduced the processing time and the memory required during the fusion process, and leads to very cheap and fast hardware implementation of the presented approach.
Medical image fusion is designed to help physicians in their decisions by providing them with a preclinical image with enough information. Accurate assessment and effective treatment of the disease reduce the time it takes to relieve the symptoms of the disease. This article utilizes an effective data fusion approach to work on two different imaging modalities; computed tomography (CT) and magnetic resonance imaging (MRI). The data fusion approach is based on the combination of singular value decomposition (SVD) and the Fast Discrete Curvelet Transform (FDCT) techniques to reduce processing time during the fusion process. The SVD-FDCT data fusion approach is being tested with two multimodal medical image fusion applications. The first application concerns the detection of liver lesions and the second application concerns the early detection of acute intracerebral hemorrhage. Experimental tests demonstrate that not only the SVD-FDCT data fusion algorithm can treat the curved objects and edges effectively as the FDCT do. But also, the throughput of the fusion algorithm is comparable to related fusion algorithms such as principal component analysis (PCA), Transform and Discrete Wavelet Transform (DWT), dual-tree complex wavelet transform (DT-CWT), and Curvelet fusion algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.