Rheological properties of vinyl ester-polyester resin suspensions containing various amounts (0.05, 0.1 and 0.3 wt.%) of multi walled carbon nanotubes (MWCNT) with and without amine functional groups (-NH 2 ) were investigated by utilization of oscillatory rheometer with parallel plate geometry. Dispersion of corresponding carbon nanotubes within the resin blend was accomplished employing high shear mixing technique (3-roll milling). Based on the dynamic viscoelastic measurements, it was observed that at 0.3 wt.% of CNT loadings, storage modulus (G 0 ) values of suspensions containing MWCNTs and MWCNT-NH 2 exhibited frequency-independent pseudo solid like behavior especially at lower frequencies. Moreover, the loss modulus (G 00 ) values of the resin suspensions with respect to frequency were observed to increase with an increase in contents of CNTs within the resin blend. In addition, steady shear viscosity measurements implied that at each given loading rate, the resin suspensions demonstrated shear thinning behavior regardless of amine functional groups, while the neat resin blend was almost the Newtonian fluid. Furthermore, dynamic mechanical behavior of the nanocomposites achieved by polymerizing the resin blend suspensions with MWCNTs and MWCNT-NH 2 was investigated through dynamic mechanical thermal analyzer (DMTA). It was revealed that storage modulus (E 0 ) and the loss modulus (E 00 ) values of the resulting nanocomposites increased with regard to carbon nanotubes incorporated into the resin blend. In addition, at each given loading rate, nanocomposites containing MWCNT-NH 2 possessed larger loss and storage modulus values as well as higher glass transition temperatures (T g ) as compared to those with MWCNTs. These findings were attributed to evidences for contribution of amine functional groups to chemical interactions at the interface between CNTs and the resin blend matrix. Transmission electron microscopy (TEM) studies performed on the cured resin samples approved that the dispersion state of carbon nanotubes with and without amine functional groups within the matrix resin blend was adequate. This implies that 3-roll milling process described herein is very appropriate technique for blending of carbon nanotubes with a liquid thermoset resin to manufacture nanocomposites with enhanced final properties.
Carbon nanotubes (CNTs) have outstanding mechanical, thermal and electrical properties. As a result, particular interest has been recently given in exploiting these properties by incorporating carbon nanotubes into some form of matrix. Although unsaturated polyesters with styrene have widespread use in the industrial applications, surprisingly there is no study in the literature about CNT/thermoset polyester nanocomposite systems. In the present paper, we underline some important issues and limitations during the processing of unsaturated polyester resins with different types of carbon nanotubes. In that manner, 3-roll mill and sonication techniques were comparatively evaluated to process nanocomposites made of CNTs with and without amine (NH 2 ) functional groups and polyesters. It was found that styrene evaporation from the polyester resin system was a critical issue for nanocomposite processing. Rheological behaviour of the suspensions containing CNTs and tensile strengths of their resulting nanocomposites were characterized. CNT/polyester suspensions exhibited a shear thinning behaviour, while polyester resin blends act as a Newtonian fluid. It was also found that nanotubes with amine functional groups have better tensile strength, as compared to those with untreated CNTs. Transmission electron microscopy (TEM) was also employed to reveal the degree of dispersion of CNTs in the matrix.
a b s t r a c tIn this study, mode I and mode II interlaminar fracture toughness, and interlaminar shear strength of E-glass non-crimp fabric/carbon nanotube modified polymer matrix composites were investigated. The matrix resin containing 0.1 wt.% of amino functionalized multi walled carbon nanotubes were prepared, utilizing the 3-roll milling technique. Composite laminates were manufactured via vacuum assisted resin transfer molding process. Carbon nanotube modified laminates were found to exhibit 8% and 11% higher mode II interlaminar fracture toughness and interlaminar shear strength values, respectively, as compared to the base laminates. However, no significant improvement was observed for mode I interlaminar fracture toughness values. Furthermore, Optical microscopy and scanning electron microscopy were utilized to monitor the distribution of carbon nanotubes within the composite microstructure and to examine the fracture surfaces of the failed specimens, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.