Purpose To investigate the relationship between urinary stone type and the type of crystals in the urine. Patients and Methods This retrospective study involved 485 patients with urinary stones treated at King Saud University Medical City from May 2015 to June 2017. Clinical data were obtained from medical records. Different statistical analysis methods were applied, including basic contingency analysis, analysis of variance, logistic regression, discriminant analysis, partition modeling, and neural network evaluations. Results Of 485 patients, 47 had crystals detected by urinalysis. The most common type of crystal was calcium oxalate (n = 31), which had the highest association with calcium oxalate stones. Uric acid crystals (n = 8) were associated with uric acid stones. The neural network model used for determining the sensitivity and specificity showed an R-square value of 0.88, with an area under the curve of 0.94 for calcium oxalate, 0.94 for carbonate apatite, and 1.0 for uric acid. Conclusion The predictive algorithm developed in the present study may be used with a patient’s clinical parameters to predict the stone type. This approach predicts the stone types associated with certain patient characteristics with a high sensitivity and specificity, indicating that the models may be a valuable clinical tool in the diagnosis, management, and monitoring of stone diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.