A novel reconfigurable sub-6 GHz microstrip patch antenna operating at three resonant frequencies 3.6, 3.9, and 4.9 GHz is designed for 5G applications. The proposed antenna is constructed from metamaterial (MTM) array with a matching circuit printed around a printed strip line. The antenna is excited with a coplanar waveguide to achieve an excellent matching over a wide frequency band. The proposed antenna shows excellent performance in terms of S 11 , gain, and radiation pattern that are controlled well with two photo resistance. The proposed antenna shows different operating frequencies and radiation patterns after changing the of photo resistance status. The main antenna novelty is achieved by splitting the main lobe that tracks more than one user at the same resonant frequency. Nevertheless, the main radiation lobe can be steered to the desired location by controlling the surface current motion using two varactor diodes on a matching circuit.
A novel antenna structure is constructed from cascading multi-stage metamaterial (MTM) unit cells-based printed monopole antenna for 5G mobile communication networks. The proposed antenna is constructed from a printed conductive trace that fetches four MTM unit cells through four T-Resonators (TR) structures. Such a combination is introduced to enhance the antenna gain-bandwidth products at sub-6GHz bands after exiting the antenna with a coplanar waveguide (CPW) feed. The antenna circuitry is fabricated by etching a copper layer that is mounted on Taconic RF-43 substrate. Therefore, the proposed antenna occupies an effective area of 51 × 24 mm2. The proposed antenna provides an acceptable matching impedance with S11 ≤ −10 dB at 3.7 GHz, 4.6 GHz, 5.2 GHz, and 5.9 GHz. The antenna radiation patterns are evaluated at the frequency bands of interest with a gain average of 9.1–11.6 dBi. Later, to control the antenna performance, four optical switches based on LDR resistors are applied to control the antenna gain at 5.85 GHz, which is found to vary from 2 dBi to 11.6 dBi after varying the value of the LDR resistance from 700 Ω to 0 Ω, in descending manner. It is found that the proposed antenna provides an acceptable bit error rate (BER) with varying the antenna gain in a very acceptable manner in comparison to the ideal performance. Finally, the proposed antenna is fabricated to be tested experimentally in in free space and in close to the human body for portable applications.
Contact resistance and Thomson heat are the two major factors in the analysis of thermoelectric modules that are often being ignored. Each of these factors has an adverse effect on the output performance of a thermoelectric module.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.