Second generation ethanol is produced from non-food based including waste from food crops, wood chips and agricultural residue. Lignocellulosic and starchy materials in them are converted to fermentable sugars which are further processed to produce bioethanol. Rice bran is an agricultural residue with abundant carbohydrate for bioconversion into ethanol. This study was designed to evaluate the potential of two varieties of rice bran (Sipi and Wita) to produce bioethanol. Compositional analysis of Wita rice bran showed 40% cellulose, 23% hemicellulose and 16% lignin content. Sipi variety contains 35% cellulose, 27% hemicellulose and 13% lignin content. Sodium hydroxide pretreatment was carried out at different concentrations (0.5%, 1%, 2% and 3%) and residence time of (15, 30, 60, and 90min). It was observed from the present study, pretreatment of rice bran with 2% NaOH for 90min is considered as effective pretreatment condition for bioethanol production from rice bran. Simultaneous saccharification and fermentation of cellulosic biomass was carried out for 72h with Saccharomyces cerevisae and Mucor indicus. Fermentation of Wita variety with S.cerevisiae produced highest bioethanol yield of 1.36% while Mucor indicus produced 0.75% bioethanol yield. From the result of these findings, it can be concluded that rice bran could be considered as a promising substrate for the fermentation of second generation ethanol.
Second generation ethanol is produced from non-food based including waste from food crops, wood chips and agricultural residue. Lignocellulosic and starchy materials in them are converted to fermentable sugars which are further processed to produce bioethanol. Rice bran is an agricultural residue with abundant carbohydrate for bioconversion into ethanol. This study was designed to evaluate the potential of two varieties of rice bran (Sipi and Wita) to produce bioethanol. Compositional analysis of Wita rice bran showed 40% cellulose, 23% hemicellulose and 16% lignin content. Sipi variety contains 35% cellulose, 27% hemicellulose and 13% lignin content. Sodium hydroxide pretreatment was carried out at different concentrations (0.5%, 1%, 2% and 3%) and residence time of (15, 30, 60, and 90min). It was observed from the present study, pretreatment of rice bran with 2% NaOH for 90min is considered as effective pretreatment condition for bioethanol production from rice bran. Simultaneous saccharification and fermentation of cellulosic biomass was carried out for 72h with Saccharomyces cerevisae and Mucor indicus. Fermentation of Wita variety with S.cerevisiae produced highest bioethanol yield of 1.36% while Mucor indicus produced 0.75% bioethanol yield. From the result of these findings, it can be concluded that rice bran could be considered as a promising substrate for the fermentation of second generation ethanol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.