Physical deformation mechanisms are emerging as compelling and simple ways to adapt radio frequency (RF) characteristics of antennas in contrast to digital steering approaches acting on topologically fixed antennas. Concepts of physical reconfigurability also enable exceptional capabilities such as deployable and morphing antenna arrays that serve multiple functions and permit compact transport with ease. Yet, the emergent concepts lack broad understanding of effective approaches to integrate conformal, electrically conductive architectures with high-compliance foldable frameworks. To explore this essential interface where electrical demands and mechanical requirements may conflict, this research introduces a new class of origami-based tessellated antennas whose RF characteristics are self-tuned by physical reconfiguration of the antenna shape. E-textile materials are used to permit large antenna shape change while maintaining electrical conductivity. Dipole and patch antennas are considered as conventional antenna platforms upon which to innovate with the e-textile origami concept. Multiphysics modeling efforts establish the efficacy of foldable antenna geometries for broad tailoring of the RF characteristics. Experiments with proof-of-concept antennas confirm the large adaptability of wave radiation properties enabled by the reconfiguration of the e-textile origami surfaces. The results suggest that e-textile antennas can be integrated into clothing and mechanical structures, providing a non-invasive way of quantifying deformation for a wide range of applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.