In this paper, is devoted to evaluating the performance of the double-pass hybrid Photovoltaic-Thermal (PVT) solar system proposed for drying purposes theoretically and experimentally as well as the system is designed, fabricate and modeled in order to simulate the productivity of this system. The hot air extracted from the PVT collector can be used as a heat source for the drying application. The critical parameter such as temperature distribution, useful heat gain, electrical power, and thermal efficiency are computed using MATLAB 2015b program built for this purpose. Results show that the higher output fluid temperature was 63°C at a lesser mass flow rate which 0.017 kg/s and the maximum efficiencies of electrical, thermal and overall at a higher mass flow rate which reached 12.65%, 56.73%, and 85% respectively at mass flow rate 0.031 kg/s. In addition, the optimum electrical power and thermal energy reached 50.57 W and 389.37 W at 0.031 kg/s.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.