The fabrication of (RE)-Ba-Cu-O bulk superconductors, where RE is a rare-earth element such as Y, Gd and Sm, is both time consuming and expensive due to the complexity of the melt process and the slow growth rate of large, single grains. In this study, different approaches to the fabrication of bar-shaped, bulk YBCO superconductors are investigated and compared using single-and multipleseeding techniques via top-seeded melt growth (TSMG). Both the microstructural and superconducting properties of the bulk samples are investigated, including trapped field, critical current density, critical temperature and levitation force. The results of this study indicate that, in general, the superconducting properties of YBCO fabricated by a singleseeded process are significantly better than those of samples fabricated by a four-seeded process for non-bridge seeds. The differences between the samples are less pronounced in the levitation force measurements, however. In this paper, we attempt to explain the reasons for the similarities and differences observed between bulk samples fabricated by the different single-and multi-seeded processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.