Many business applications rely on their historical data to predict their business future. The marketing products process is one of the core processes for the business. Customer needs give a useful piece of information that helps to market the appropriate products at the appropriate time. Moreover, services are considered recently as products. The development of education and health services is depending on historical data. For the more, reducing online social media networks problems and crimes need a significant source of information. Data analysts need to use an efficient classification algorithm to predict the future of such businesses. However, dealing with a huge quantity of data requires great time to process. Data mining involves many useful techniques that are used to predict statistical data in a variety of business applications. The classification technique is one of the most widely used with a variety of algorithms. In this paper, various classification algorithms are revised in terms of accuracy in different areas of data mining applications. A comprehensive analysis is made after delegated reading of 20 papers in the literature. This paper aims to help data analysts to choose the most suitable classification algorithm for different business applications including business in general, online social media networks, agriculture, health, and education. Results show FFBPN is the most accurate algorithm in the business domain. The Random Forest algorithm is the most accurate in classifying online social networks (OSN) activities. Naïve Bayes algorithm is the most accurate to classify agriculture datasets. OneR is the most accurate algorithm to classify instances within the health domain. The C4.5 Decision Tree algorithm is the most accurate to classify students' records to predict degree completion time.
The Internet of Things (IoT) enable the IoT to sense and respond using the power of computing to autonomously come up with the best solutions for any industry today. However, Internet of Things have vulnerabilities since it can be hacked by cybercriminals. The cybercriminals know where the IoT vulnerabilities are, such as unsecured update mechanisms and malware (Malicious Software) to attack the IoT devices. The recently posted IoT-23 dataset based on several IoT devices such as Philips Hue, Amazon Echo devices and Somfy door lock were used for machine learning classification algorithms and data mining techniques with training and testing for predictive modelling of a variety of malware attacks like Distributed Denial of Service (DDoS), Command and Control (C&C) and various IoT botnets like Mirai and Okiru. This paper aims to develop predictive modeling that will predict malicious software to protect IoT and reduce vulnerabilities by using machine learning and data mining techniques. We collected, analyzed and processed benign and several of malicious software in IoT network traffic. Malware prediction is crucial in maintaining IoT devices' safety and security from cybercriminals' activities. Furthermore, the Principal Component Analysis (PCA) method was applied to determine the important features of IoT-23. In addition, this study compared with previous studies that used the IoT-23 dataset in terms of accuracy rate and other metrics. Experiments show that Random Forest (RF) classifier achieved the predictive model produced classification accuracy 0.9714% as well as predict 8754 samples with various types of malware and obtained 0.9644% of Area Under Curve (AUC) which outperforms several bassline machine learning classification models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.