Heavy-haul railway has been developed rapidly in many countries in the world due to its great social and economic benefits. One of the key technologies for heavy-haul railway is the reduction of vibration on the track structures and its surrounding due to impact load induced by the train in service. The vibration behaviors of two kinds of low-vibration track (LVT) systems for heavy-haul railway are investigated in this paper. Firstly, two indoor full-scale low-vibration track models (new LVT and traditional LVT), which include rail, fastener, bearing block, rubber boot, track slab, and foundation base, were constructed according to design drawings. Secondly, the vibration responses of the different track components under the impact excitation of a dropping wheelset were measured. Thirdly, the time-domain characteristics of each track component of the two LVTs were compared by the acquired vibration time-history curves. Finally, the frequency-domain distribution was analyzed, and the vibration reduction performance was evaluated by the comprehensive time-frequency analysis results. The results show the new LVT has lower vibration acceleration, shorter duration of vibration period, lower vibration frequency of track components, and most importantly an obvious vibration reduction effect on the ground. The research results are useful to further optimize the design of LVT to reduce the vibration under train impact load.
In this paper, a full-scale model of Low Vibration Track was established and three working conditions were applied to a single bearing block; these include: vertical load at the end of the track slab, combination of horizontal and vertical load at the end of the track slab, and vertical load at the middle of the track slab. By applying four times static wheel load to the full-scale model, the relationship between the stress of the track structure and the load under different working conditions was investigated. The corresponding load values were obtained when the track slab and the bearing block reached the axial tensile strength of the concrete. Through the static load test, the weak position of the track structure was found, and the development trend of the crack was obtained. (1) Obtained the maximum stress of the concrete of the track slab at the corner of the bearing block, the maximal stress of the concrete of the track slab, the stress at the bottom of the bearing block, and the stress at the bottom of the bearing block under different working conditions. (2) The horizontal load of the train increased the force of the track slab concrete at the corners of the bearing block. (3) Compared the strain of different location of the track slab and different working conditions. (4) Observed the positions of slight crack and its development trend appeared on track slabs in different working conditions. (5) For the weak part of the track structure, it can be improved by measures such as increasing the thickness of the end of the track slab and arranging stirrups in the track slab around the support block. The research results provide reference for the design, application and maintenance of Low Vibration Track in the heavy-haul railway tunnel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.