Aims: This work aim is to develop an enhanced predictive system for Coronary Heart Disease (CHD). Study Design: Synthetic Minority Oversampling Technique and Random Forest. Methodology: The Framingham heart disease dataset was used, which was collected from a study in Framingham, Massachusetts, the data was cleaned, normalized, rebalanced. Classifiers such as random forest, artificial neural network, naïve bayes, logistic regression, k-nearest neighbor and support vector machine were used for classification. Results: Random Forest outperformed other classifiers with an accuracy of 98%, a sensitivity of 99% and a precision of 95.8%. Feature selection was employed for better classification, but no significant improvement was recorded on the performance of the classifier with feature selection. Train test split also performed better that cross validation. Conclusion: Random Forest is recommended for research in Coronary Heart Disease prediction domain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.