Plants are sessile organisms and, in order to defend themselves against exogenous (a)biotic constraints, they synthesize an array of secondary metabolites which have important physiological and ecological effects. Plant secondary metabolites can be classified into four major classes: terpenoids, phenolic compounds, alkaloids and sulphur-containing compounds. These phytochemicals can be antimicrobial, act as attractants/repellents, or as deterrents against herbivores. The synthesis of such a rich variety of phytochemicals is also observed in undifferentiated plant cells under laboratory conditions and can be further induced with elicitors or by feeding precursors. In this review, we discuss the recent literature on the production of representatives of three plant secondary metabolite classes: artemisinin (a sesquiterpene), lignans (phenolic compounds) and caffeine (an alkaloid). Their respective production in well-known plants, i.e., Artemisia, Coffea arabica L., as well as neglected species, like the fibre-producing plant Urtica dioica L., will be surveyed. The production of artemisinin and caffeine in heterologous hosts will also be discussed. Additionally, metabolic engineering strategies to increase the bioactivity and stability of plant secondary metabolites will be surveyed, by focusing on glycosyltransferases (GTs). We end our review by proposing strategies to enhance the production of plant secondary metabolites in cell cultures by inducing cell wall modifications with chemicals/drugs, or with altered concentrations of the micronutrient boron and the quasi-essential element silicon.
Soil composition largely defines the living conditions of plants and represents one of their most relevant, dynamic and complex environmental cues. The effective concentrations of many either tolerated or essential ions and compounds in the soil usually differ from the optimum that would be most suitable for plants. In this regard, salinity - caused by excess of NaCl - represents a widespread adverse growth condition but also shortage of ions like K+, NO3- and Fe2+ restrains plant growth. During the past years many components and mechanisms that function in the sensing and establishment of ion homeostasis have been identified and characterized. Here, we reflect on recent insights that extended our understanding of components and mechanisms, which govern and fine-tune plant salt stress tolerance and ion homeostasis. We put special emphasis on mechanisms that allow for interconnection of the salt overly sensitivity pathway with plant development and discuss newly emerging functions of Ca2+ signaling in salinity tolerance. Moreover, we review and discuss accumulating evidence for a central and unifying role of Ca2+ signaling and Ca2+ dependent protein phosphorylation in regulating sensing, uptake, transport and storage processes of various ions. Finally, based on this cross-field inventory, we deduce emerging concepts and arising questions for future research.
Wadi Al-Jufair, a tributary of Wadi Nisah, is one of the important wadis of Najd region (Saudi Arabia) sheltering a rich diversity of higher plants. The study area is extended into approximately 15 km(2) encompassing the commonest geomorphological features encountered in desert wadis. The wadi supports several rare plants, including Maerua crassifolia Forssk., a regionally endangered tree, and Acacia oerfota (Forssk.) Schweinf., a rare shrub with restricted distribution. The present study aims to analyze the vegetation of wadi Al-Jufair and propose its designation as an important plant reserve. The vegetation type is fundamentally of chamaephytic nature with some phanerophytes, and distinguished into associations where the dominant perennial species give the permanent character of plant cover in each habitat. Four vegetation groups were identified with the application of TWINSPAN, DCA and CCA programs and named after the characteristic species as follows: Lycium shawii; A. oerfota; Acacia raddiana-Rhazya stricta and Artemisia monosperma. These plant associations demonstrate significant variation in soil texture, moisture, organic matter, pH, EC, and minerals of Wadi Al-Jufair.
BackgroundSalinity is one of the damaging abiotic stress factor. Proper management techniques have been proposed to considerably lower the intensity of salinity on crop growth and productivity. Therefore experiments were conducted to assess the role of improved nitrogen (N) supplementation on the growth and salinity stress tolerance in wheat by analyzing the antioxidants, osmolytes and secondary metabolites.ResultsSalinity (100 mM NaCl) stress imparted deleterious effects on the chlorophyll and carotenoid synthesis as well as the photosynthetic efficiency. N supplementation resulted in increased photosynthetic rate, stomatal conductance and internal CO2 concentration with effects being much obvious in seedlings treated with higher N dose. Under non-saline conditions at both N levels, protease and lipoxygenase activity reduced significantly reflecting in reduced oxidative damage. Such effects were accompanied by reduced generation of toxic radicals like hydrogen peroxide and superoxide, and lipid peroxidation in N supplemented seedlings. Antioxidant defence system was up-regulated under saline and non-saline growth conditions due to N supplementation leading to protection of major cellular processes like photosynthesis, membrane structure and function, and mineral assimilation. Increased osmolyte and secondary metabolite accumulation, and redox components in N supplemented plants regulated the ROS metabolism and NaCl tolerance by further strengthening the antioxidant mechanisms.ConclusionsFindings of present study suggest that N availability regulated the salinity tolerance by reducing Na uptake and strengthening the key tolerance mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.