Deep learning techniques, which use a massive technology known as convolutional neural networks, have shown excellent results in a variety of areas, including image processing and interpretation. However, as the depth of these networks grows, so does the demand for a large amount of labeled data required to train these networks. In particular, the medical field suffers from a lack of images because the procedure for obtaining labeled medical images in the healthcare field is difficult, expensive, and requires specialized expertise to add labels to images. Moreover, the process may be prone to errors and time-consuming. Current research has revealed transfer learning as a viable solution to this problem. Transfer learning allows us to transfer knowledge gained from a previous process to improve and tackle a new problem. This study aims to conduct a comprehensive survey of recent studies that dealt with solving this problem and the most important metrics used to evaluate these methods. In addition, this study identifies problems in transfer learning techniques and highlights the problems of the medical dataset and potential problems that can be addressed in future research. According to our review, many researchers use pre-trained models on the Imagenet dataset (VGG16, ResNet, Inception v3) in many applications such as skin cancer, breast cancer, and diabetic retinopathy classification tasks. These techniques require further investigation of these models, due to training them on natural, non-medical images. In addition, many researchers use data augmentation techniques to expand their dataset and avoid overfitting. However, not enough studies have shown the effect of performance with or without data augmentation. Accuracy, recall, precision, F1 score, receiver operator characteristic curve, and area under the curve (AUC) were the most widely used measures in these studies. Furthermore, we identified problems in the datasets for melanoma and breast cancer and suggested corresponding solutions.
Recently, transfer learning approaches appeared to reduce the need for many classified medical images. However, these approaches still contain some limitations due to the mismatch of the domain between the source domain and the target domain. Therefore, this study aims to propose a novel approach, called Dual Transfer Learning (DTL), based on the convergence of patterns between the source and target domains. The proposed approach is applied to four pre-trained models (VGG16, Xception, ResNet50, MobileNetV2) using two datasets: ISIC2020 skin cancer images and ICIAR2018 breast cancer images, by fine-tuning the last layers on a sufficient number of unclassified images of the same disease and on a small number of classified images of the target task, in addition to using data augmentation techniques to balance classes and to increase the number of samples. According to the obtained results, it has been experimentally proven that the proposed approach has improved the performance of all models, where without data augmentation, the performance of the VGG16 model, Xception model, ResNet50 model, and MobileNetV2 model are improved by 0.28%, 10.96%, 15.73%, and 10.4%, respectively, while, with data augmentation, the VGG16 model, Xception model, ResNet50 model, and MobileNetV2 model are improved by 19.66%, 34.76%, 31.76%, and 33.03%, respectively. The Xception model obtained the highest performance compared to the rest of the models when classifying skin cancer images in the ISIC2020 dataset, as it obtained 96.83%, 96.919%, 96.826%, 96.825%, 99.07%, and 94.58% for accuracy, precision, recall, F1-score, sensitivity, and specificity respectively. To classify the images of the ICIAR 2018 dataset for breast cancer, the Xception model obtained 99%, 99.003%, 98.995%, 99%, 98.55%, and 99.14% for accuracy, precision, recall, F1-score, sensitivity, and specificity, respectively. Through these results, the proposed approach improved the models’ performance when fine-tuning was performed on unclassified images of the same disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.