Background: Falls are a major health concern, with one in three adults over the age of 65 falling each year. A key gait parameter that is indicative of tripping is minimum foot clearance (MFC), which occurs during the mid-swing phase of gait. This is the second of a two-part scoping review on MFC literature. The aim of this paper is to identify vulnerable populations and conditions that impact MFC mean or median relative to controls. This information will inform future design/maintenance standards and outdoor built environment guidelines. Methods: Four electronic databases were searched to identify journal articles and conference papers that report level-ground MFC characteristics. Two independent reviewers screened papers for inclusion. Results: Out of 1571 papers, 43 relevant papers were included in this review. Twenty-eight conditions have been studied for effects on MFC. Eleven of the 28 conditions led to a decrease in mean or median MFC including dual-task walking in older adults, fallers with multiple sclerosis, and treadmill walking. All studies were conducted indoors. Conclusions: The lack of standardized research methods and covariates such as gait speed made it difficult to compare MFC values between studies for the purpose of defining design and maintenance standards for the outdoor built environment. Standardized methods for defining MFC and an emphasis on outdoor trials are needed in future studies.
Background: Falls are a major public health issue and tripping is the most common self-reported cause of outdoor falls. Minimum foot clearance (MFC) is a key parameter for identifying the probability of tripping. Optical motion capture systems are commonly used to measure MFC values; however, there is a need to identify alternative modalities that are better suited to collecting data in real-world settings. Objective: This is the first of a two-part scoping review. The objective of this paper is to identify and evaluate alternative measurement modalities to optical motion capture systems for measuring level-ground MFC. A companion paper identifies conditions that impact MFC and the range of MFC values individuals that these conditions exhibit. Methods: We searched four electronic databases, where peer-reviewed journals and conference papers reporting level-ground MFC characteristics were identified. The papers were screened by two independent reviewers for inclusion. The reporting was done in keeping with the PRISMA-ScR reporting guidelines. Results: From an initial search of 1571 papers, 17 papers were included in this paper. The identified technologies were inertial measurement units (IMUs) (n = 10), ultrasonic sensors (n = 2), infrared sensors (IR) (n = 2), optical proximity sensors (OPS) (n = 1), laser ranging sensors (n = 1), and ultra-wideband sensors (n = 1). From the papers, we extracted the sensor type, the analysis methods, the properties of the proposed system, and its accuracy and validation methods. Conclusions: The two most commonly used alternative modalities were IMUs and OPS. There was a lack of standardization among studies utilizing the same measurement modalities, as well as discrepancies in the methods used to assess performance. We provide a list of recommendations for future work to allow for more meaningful comparison between modalities as well as future research directions.
Background Whether due to aging, disability, injury, or other circumstances, an increasing number of Canadians experience functional limitations that reduce their ability to participate in activities of daily life. While the built environment has become increasingly accessible, existing Canadian evacuation guidelines lack comprehensive strategies for evacuating individuals with functional limitations from buildings during emergencies. To inform guideline revisions, a map of existing solutions for evacuating such individuals is required. Therefore, this scoping review aims to provide an account of solutions that have been reported to safely evacuate individuals with functional limitations from the built environment. Methods We will conduct a scoping review using the Arksey and O’Malley methodological framework. To identify potentially relevant studies, comprehensive searches (from January 2002 onwards) of the CINAHL, Ei Compendex, Inspec, Embase, MEDLINE, KCI, RSCI, SciELO CI, Web of Science Collection, and Scopus databases will be performed. Using a set of inclusion and exclusion criteria, two reviewers will independently (1) classify identified studies as relevant, irrelevant, or maybe relevant by evaluating their titles and abstracts and (2) classify the relevant and maybe relevant studies as included or excluded by evaluating their full-text. From each included study, data on publication information, study purpose, methodological details, evacuation information, and outcomes will be extracted using a set of data extraction items. We will present a numerical summary of the key characteristics of the included studies. For each evacuation activity, reported evacuation solutions will be summarized, and citations provided for functional limitations that are targeted by a given evacuation solution. To inform Canadian evacuation guideline revisions, we will tabulate evacuation activities common to different types of buildings and emergencies. Discussion To our knowledge, this will be the first scoping review to identify the state and use of solutions for evacuating individuals with functional limitations from the built environment. Identifying solutions that enable all individuals to safely evacuate from different types of buildings will allow us to inform recommendations for the revision of evacuation guidelines in Canada and other jurisdictions. The findings of this scoping review will be published in a peer-reviewed journal, presented at relevant conferences, and made publicly available on the internet. Systematic review registration Open Science Framework: osf.io/jefgy
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.