Type 2 diabetes mellitus (T2DM) is a notable health care load that imposes a serious impact on the quality of life of patients. The small amount of reported data and multiple spectra of pathophysiological mechanisms of T2DM make it a challenging task and serious economic burden in health care management. Abrus precatorius L. is a slender, perennial, deciduous, and woody twining plant used in various regions of Asia to treat a variety of ailments, including diabetes mellitus. Various in vitro studies revealed the therapeutic significance of A. precatorius against diabetes. However, the exact molecular mechanism remains unclarified. In the present study, a network pharmacology technique was employed to uncover the active ingredients, their potential targets, and signaling pathways in A. precatorius for the treatment of T2DM. In the framework of this study, we explored the active ingredient–target–pathway network and figured out that abrectorin, abrusin, abrisapogenol J, sophoradiol, cholanoic acid, precatorine, and cycloartenol decisively contributed to the development of T2DM by affecting AKT1, MAPK3, TNFalpha, and MAPK1 genes. Later, molecular docking was employed to validate the successful activity of the active compounds against potential targets. Lastly, we conclude that four highly active constituents, namely, abrusin, abrisapogenol J, precatorine, and cycloartenol, help in improving the body’s sensitivity to insulin and regulate the expression of AKT1, MAPK3, TNFalpha, and MAPK1, which may act as potential therapeutic targets of T2DM. Integrated network pharmacology and docking analysis revealed that A. precatorius exerted a promising preventive effect on T2DM by acting on diabetes-associated signaling pathways. This provides a basis to understand the mechanism of the anti-diabetes activity of A. precatorius.
Germination models are quite helpful in predicting emergence times, dormancy periods, and their applications in crop management. This study investigated the germination behaviors of Eruca sativa Mill. in response to fluctuations in temperatures (Ts) and water potentials (ψs). Germination percentage (GP) increased 95% with rising temperature within the range of 20–30 °C, and decreased 25% at 5 °C. Moreover, each ψ and T resulted in a decrease in GP as ψ decreased. Further, we noted that the θT1 value was substantially high at 30 °C and in (0 MPa), whereas the θT2 value was maximum at 10 °C (−0.02 MPa) and it decreased with decreasing Ψ. The maximum hydrothermal time constant (θHTT) and hydrotime (θH) values were obtained at 10 and 30 °C, respectively. In addition, a linear increase in the GR(g) pattern was observed at Tb and a decrease below the To. The calculated cardinal Ts was 5 °C for the base T, and 30 °C for both the optimum and ceiling T. The germination characteristics were higher at 30 °C having (0 MPa). Therefore, using cardinal temperatures, germination results, and the hydrothermal time model (HTT) could reveal the independent and interactive impacts of both T and the Ψ on the response of seed germination subjected to diverse environmental conditions.
Jasmonates (JAs) are lipid-derived compounds that function in plants as key signaling compounds during stressful conditions. This study aimed to examine the effects of exogenous fo-liar-JA application (100 μmol L−1) on the morpho-physiological response of two soybean varieties (parachinar-local and swat-84) grown under different NaCl regimes (0, 40, 80, and 120 mM). Results show that exogenous JA application alone and in combination with salt stress altered the growth and metabolism of both soybeans. For instance, they accumulated significant amounts of Na+ and Cl–, while their K+, Mg2+, Fe2+, Mn2+, B3+, and P3+ contents were low. Further, photosynthetic pigments Chl a and Chl b increased at low concentrations of salt and exogenous JA. Car decreased under both salt and exogenous JA as compared with untreated control. In addition, sugar, phenol, and protein content increased under both salt and exogenous JA application. In contrast, the exogenous JA application alleviated the negative impact of salt stress on the growth and metabolism of both soybeans. Further, the high concentrations of soluble protein and phenol in the leaves of both soybeans may contribute to their ability to adapt to salinity. However, molecular studies are necessary to understand the ameliorative role of exogenous JA in the growth and metabolism of salt-treated young seedlings in both soybean varieties.
Genetic diversity and Agro-climatic conditions contribute significantly to the agronomic and morphological features of the food plant species, and their nutraceutical potential. The present study was intended to evaluate the impact of growing conditions on total phenolic and total flavonoid contents, and in vitro antioxidant potential in the bulbs and leaves of onion varieties planted under diverse environmental conditions. Standard analytical methods were used to quantify total phenolic content (TPC), total flavonoid content (TFC), and free radicals’ scavenging/antioxidant capacity. The impact of climatic and soil conditions was assessed using statistical tools. In general, onion varieties cultivated at three different locations viz. Kalar Kahar, Lahore and Swabi exhibited significant variations in TPC and TFC, and antioxidant activities. The bulbs and leaves of Mustang (V1) variety planted at Lahore and Swabi had significantly (p < 0.05), high levels of TPC (659.5 ± 6.59, and 631.1 ± 8.58 mg GAE/100 g, respectively). However, leaves of Red Orb (V2) and bulbs of Mustang (V1), and Golden Orb (V6), harvested from Kalar Kahar depicted the highest concentration of TFC (432.5 ± 10.3, 303.0 ± 6.67, and 303.0 ± 2.52 mg QE/100 g DW, respectively). Likewise, bulbs of V1 planted at Kalar Kahar, Lahore and Swabi exhibited maximum inhibition of DPPH, ABTS, and H2O2 radicals (79.01 ± 1.49, 65.38 ± 0.99, and 59.76 ± 0.90%, respectively). Golden Orb (V6) harvested from Lahore had the highest scavenging of OH radical (67.40 ± 0.09%). Likewise, bulbs of V1 variety planted at KalarKahar and Swabi had significant capacity to scavenge ferric ions (415.1 ± 10.6 mg GAE/100 g DW), and molybdate ions (213.7 ± 0.00 mg AAE/100 g DW). Conversely, leaves of Amazon (V8), planted at Lahore and Swabi depicted significant levels of DPPH, ABTS, H2O2 radical scavenging (90.69 ± 0.26, 63.55 ± 1.06, 51.86 ± 0.43%, respectively), and reduction of ferric ions (184.2 ± 6.75 mg GAE/100 g DW). V6 leaves harvested from Lahore and that of Super Sarhad (V3) from Swabi showed the highest inhibition of OH radical (61.21 ± 0.79%), and molybdate ions (623.6 ± 0.12 mg AAE/100 g DW), respectively. Pearson correlation and principal component analysis revealed strong relationships of climatic conditions, soil properties and elevation with TPC, TFC and free radicals’ scavenging potential in the bulbs and leaves of onion varieties. The variations in the total phenolic and flavonoid contents, and antioxidant potential of different varieties, and their associations with climatic and soil factors revealed the complexity of the growing conditions and genetic makeup that imposed significant impacts on the synthesis of secondary metabolites and nutraceutical potential of food and medicinal plant species.
Green synthesis of zinc oxide nanoparticles (ZnO NPs) using plant extracts have recently attracted considerable attention due to their environmental protection benefits and their easy and low cost of fabrication. In the current study, ZnO NPS were synthesized using the aqueous extract of Ochradenus arabicus as a capping and reducing agent. The obtained ZnO NPs were firstly characterized using ultraviolet visible (UV-Vis) spectroscopy, Fourier transform infrared (FTIR), transmission electron microscope (TEM), X-ray diffraction (XRD), energy dispersive X-ray absorption (EDX), zeta potential, and zeta size. All these techniques confirmed the characteristic features of the biogenic synthesized ZnO NPs. Then, ZnO NPs were evaluated for their effects on morphological, biochemical, and physiological parameters of Salvia officinalis cultured in Murashige and Skoog medium containing 0, 75, 100, and 150 mM of NaCl. The results showed that ZnO NPs at a dose of 10 mg/L significantly increased the shoot number, shoot fresh weight, and shoot dry weight of Salvia officinalis subjected or not to the salt stress. For the shoot length, a slight increase of 4.3% was recorded in the plant treated by 150 mM NaCl+10 mg/L ZnO NPs compared to the plant treated only with 150 mM of NaCl. On the other hand, without NaCl, the application of both concentrations 10 mg/L and 30 mg/L of ZnO NPs significantly improved the total chlorophyll content by 30.3% and 21.8%, respectively. Under 150 mM of NaCl, the addition of 10 mg/L of ZnO NPs enhanced the total chlorophyll by 1.5 times, whilst a slight decrease of total chlorophyll was recorded in the plants treated by 150 mM NaCl + 30 mg/L ZnO NPs. Additionally, ZnO NPs significantly enhance the proline accumulation and the antioxidative enzyme activities of catalase (CAT), superoxide dismutase (SOD), and glutathione reductase (GR) in plants under salinity. Our findings revealed that green synthesized ZnO NPs, especially at a dose of 10 mg/L, play a crucial role in growth enhancement and salt stress mitigation. Hence, this biosynthesized ZnO NPs at a concentration of 10 mg/L can be considered as effective nanofertilizers for the plants grown in salty areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.