This study presents a new rheometry technique which requires a free surface velocity field as an input. By minimising the difference between observed and simulated data, we show here that it is possible to estimate the three parameters of an assumed Ellis rheological law. The dam-break problem is considered here with molasses as the working fluid. The free surface velocity is evaluated by seeding the free surface with buoyant particles and using particle tracking velocimetry. The parameter identification is successfully tested with "synthetic" data produced by the numerical model. The parameter identification algorithm is shown to be robust even when significant noise is added to the synthetic dataset. For true experimental data, the reconstructed flow curve is within 25% of the actual one, demonstrating the potential of the method for circumstances where standard rheometry does not apply.
This paper explores the possibility of identifying the rheology of a fluid by monitoring how the free surface velocity field is affected by a perturbation in the flow. The dam-break problem is considered which results from the release of a gate initially separating two fluid pools of different depth. The flow velocity is measured by seeding the free surface with buoyant particles and using Particle Tracking Velocimetry. In parallel, a mathematical model based on the lubrication approximation for fluids with a power-law rheology is developed. The model is validated against a similarity solution which is obtained for the spreading of a gravity current under its own weight and neglecting surface tension. Minimizing the difference between the free surface velocity fields obtained numerically and measured experimentally enables the identification of rheological parameters. The methodology is tested on ideal and noisy synthetic data sets and experimental data obtained with aqueous glycerol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.