The molecular basis of the anti-diabetic properties of camel milk reported in many studies and the exact active agent are still elusive. Recent studies have reported effects of camel whey proteins (CWP) and their hydrolysates (CWPH) on the activities of dipeptidyl peptidase IV (DPP-IV) and the human insulin receptor (hIR). In this study, CWPH were generated, screened for DPP-IV binding in silico and inhibitory activity in vitro, and processed for peptide identification. Furthermore, pharmacological action of intact CWP and their selected hydrolysates on hIR activity and signaling and on glucose uptake were investigated in cell lines. Results showed inhibition of DPP-IV by CWP and CWPH and their positive action on hIR activation and glucose uptake. Interestingly, the combination of CWP or CWPH with insulin revealed a positive allosteric modulation of hIR that was drastically reduced by the competitive hIR antagonist. Our data reveal for the first time the profiling and pharmacological actions of CWP and their derived peptides fractions on hIR and their pathways involved in glucose homeostasis. This sheds more light on the anti-diabetic properties of camel milk by providing the molecular basis for the potential use of camel milk in the management of diabetes.
Hemorphins are hemoglobin β-chain–derived peptides initially known for their analgesic effects via binding to the opioid receptors belonging to the family of G protein–coupled receptor (GPCR), as well as their physiological action on blood pressure. However, their molecular mechanisms in the regulation of blood pressure are not fully understood. Studies have reported an antihypertensive action via the inhibition of the angiotensin-converting enzyme, a key enzyme in the renin–angiotensin system. In this study, we hypothesized that hemorphins may also target angiotensin II (AngII) type 1 receptor (AT1R) as a key GPCR in the renin–angiotensin system. To investigate this, we examined the effects of LVV–hemorphin-7 on AT1R transiently expressed in human embryonic kidney (HEK293) cells using bioluminescence resonance energy transfer (BRET) technology for the assessment of AT1R/Gαq coupling and β-arrestin 2 recruitment. Interestingly, while LVV–hemorphin-7 alone had no significant effect on BRET signals between AT1R and Gαq or β-arrestin 2, it nicely potentiated AngII-induced BRET signals and significantly increased AngII potency. The BRET data were also correlated with AT1R downstream signaling with LVV–hemorphin-7 potentiating the canonical AngII-mediated Gq-dependent inositol phosphate pathway as well as the activation of the extracellular signal–regulated kinases (ERK1/2). Both AngII and LVV–hemorphin-7–mediated responses were fully abolished by AT1R antagonist demonstrating the targeting of the active conformation of AT1R. Our data report for the first time the targeting and the positive modulation of AT1R signaling by hemorphins, which may explain their role in the physiology and pathophysiology of both vascular and renal systems. This finding further consolidates the pharmacological targeting of GPCRs by hemorphins as previously shown for the opioid receptors in analgesia opening a new era for investigating the role of hemorphins in physiology and pathophysiology via the targeting of GPCR pharmacology and signaling.
Lactoferrin (LF) is a milk protein that may be an interesting candidate for the antidiabetic properties of milk due to its well-documented bioactivity and implication in diabetes. Here, we investigated the functional action of LF purified from camel and bovine milk (cLF, bLF) on insulin receptors (IR) and their pharmacology and signaling in hepatocarcinoma (HepG2) and human embryonic kidney (HEK293) cells. For this, we examined IR activation by bioluminescence resonance energy transfer (BRET) technology and the phosphorylation of its key downstream signaling kinases by western blot. The purified cLF and bLF induced phosphorylation of IR, AKT, and ERK1/2 in HepG2 and HEK293 cells. The BRET assays in HEK293 cells confirm the pharmacological action of cLF and bLF on IR, with a possible allosteric mode of action. This reveals for the first time the bioactivity of LF toward IR function, indicating it as a potential bioactive protein behind the antidiabetic properties of camel milk.
The key hormone of the renin-angiotensin system (RAS), angiotensin II (AngII), and thrombin are known to play major roles in the vascular system and its related disorders. Previous studies reported connections between AngII and thrombin in both physiological and pathophysiological models. However, the molecular mechanisms controlling such interplay at the level of their receptors belonging to the family of G protein-coupled receptors (GPCRs) are not fully understood. In this study, we investigated the functional interaction between the AngII type 1 receptor (AT1R) and the thrombin receptor [or protease-activated receptor 1 (PAR1)] in human embryonic kidney 293 (HEK293) cells. For this, we used various bioluminescence resonance energy transfer (BRET) proximitybased assays to profile the coupling to the heterotrimeric Gaq protein, b-arrestin recruitment, and receptor internalization and trafficking in intact cells. The overall doseresponse and real-time kinetic BRET data demonstrated the specific molecular proximity between AT1R and PAR1 resulting in their functional interaction. This was characterized by thrombin inducing BRET increase within AT1R/Gaq and AT1R/b-arrestin pairs and synergistic effects observed upon the concomitant activation of both receptors suggesting a positive allosteric interaction. The BRET data corroborated with the data on the downstream Gaq/inositol phosphate pathway. Moreover, the selective pharmacological blockade of the receptors revealed the implication of both AT1R and PAR1 protomers in such a synergistic interaction and the possible transactivation of AT1R by PAR1. Interestingly, the positive action of PAR1 on AT1R activation was contrasted with its apparent inhibition of AT1R internalization and its endosomal trafficking. Finally, BRET saturation and co-immunoprecipitation assays supported the physical AT1-PAR1 interaction in HEK293 cells. Our study reveals for the first time the functional interaction between AT1R and PAR1 in vitro characterized by a transactivation and positive allosteric modulation of AT1R and inhibition of its desensitization and internalization. This finding may constitute the molecular basis of the well-known interplay between RAS and thrombin. Thus, our data should lead to revising some findings on the implication of
ObjectivesThe coronavirus disease-19 (COVID-19) pandemic is caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). At the molecular and cellular levels, the SARS-Cov-2 uses its envelope glycoprotein, the spike S protein, to infect the target cells in the lungs via binding with their transmembrane receptor, the angiotensin-converting enzyme 2 (ACE2). Here, we wanted to invesitgate if other molecular targets and pathways may be used by SARS-Cov-2.MethodsWe investigated the possibility for the spike 1 S protein and its receptor-binding domain (RBD) to target the epidermal growth factor receptor (EGFR) and its downstream signaling pathway in vitro using the lung cancer cell line (A549 cells). Protein expression and phosphorylation was examined upon cell treatment with the recombinant full spike 1 S protein or RBD.ResultsWe demonstrate for the first time the activation of EGFR by the Spike 1 protein associated with the phosphorylation of the canonical ERK1/2 and AKT kinases and an increase of survivin expression controlling the survival pathway.ConclusionsOur study suggests the putative implication of EGFR and its related signaling pathways in SARS-CoV-2 infectivity and Covid-19 pathology. This may open new perspectives in the treatment of Covid-19 patients by targeting EGFR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.