Prostate cancer is the main cause of death over the globe. Earlier detection and classification of cancer is highly important to improve patient health. Previous studies utilized statistical and machine learning (ML) techniques for prostate cancer detection. However, several challenges that exist in the investigation process are the existence of high dimensionality data and less number of training samples. Metaheuristic algorithms can be used to resolve the curse of dimensionality and improve the detection rate of artificial intelligence (AI) techniques. With this motivation, this article develops an artificial intelligence based feature selection with deep learning model for prostate cancer detection (AIFSDL-PCD) using microarray gene expression data. The AIFSDL-PCD technique involves preprocessing to enhance the input data quality. In addition, a chaotic invasive weed optimization (CIWO) based feature selection (FS) technique for choosing an optimal subset of features shows the novelty of the work. Moreover, the deep neural network (DNN) model can be applied as a classification model to detect the existence of prostate cancer in the microarray gene expression data. Furthermore, the hyperparameters of the DNN model can be effectively adjusted by the use of RMSprop optimizer. The design of CIWO based FS technique helps for reducing the computational complexity and improve the classification accuracy. The experimental results highlighted the betterment of the AIFSDL-PCD approach on the other techniques with respect to distinct measures.
Studies carried out by researchers show that data growth can be exploited in such a way that the use of deep learning algorithms allow predictions with a high level of precision based on the data, which is why the latest studies are focused on the use of convolutional neural networks as the optimal algorithm for image classification. The present research work has focused on making the diagnosis of a disease that affects the cornea called keratoconus through the use of deep learning algorithms to detect patterns that will later be used to carry out preventive detections. The algorithm used to perform the classifications has been convolutional neural networks as well as image preprocessing to remove noise that can limit neural network learning, resulting in more than 1900 classified images out of a total of >2000 images distributed between normal eyes and those with keratoconus, which is equivalent to 92%.
Skin problems are among the most common ailments on Earth. Despite its popularity, assessing it is not easy because of the complexities in skin tones, hair colors, and hairstyles. Skin disorders provide a significant public health risk across the globe. They become dangerous when they enter the invasive phase. Dermatological illnesses are a significant concern for the medical community. Because of increased pollution and poor diet, the number of individuals with skin disorders is on the rise at an alarming rate. People often overlook the early signs of skin illness. The current approach for diagnosing and treating skin conditions relies on a biopsy process examined and administered by physicians. Human assessment can be avoided with a hybrid technique, thus providing hopeful findings on time. Approaches to a thorough investigation indicate that deep learning methods might be used to construct frameworks capable of identifying diverse skin conditions. Skin and non-skin tissue must be distinguished to detect skin diseases. This research developed a skin disease classification system using MobileNetV2 and LSTM. For this system, accuracy in skin disease forecasting is the primary aim while ensuring excellent efficiency in storing complete state information for exact forecasts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.