The use of external fixation devices is considered a valuable approach for the treatment of bone fractures, providing proper alignment to fractured fragments and maintaining fracture stability during the healing process. The need for external fixation devices has increased due to an aging population and increased trauma incidents. The design and fabrication of external fixations are major challenges since the shape and size of the defect vary, as well as the geometry of the human limb. This requires fully personalized external fixators to improve its fit and functionality. This paper presents a methodology to design personalized lightweight external fixator devices for additive manufacturing. This methodology comprises data acquisition, Computer tomography (CT) imaging analysis and processing, Computer Aided Design (CAD) modelling and two methods (imposed predefined patterns and topology optimization) to reduce the weight of the device. Finite element analysis with full factorial design of experiments were used to determine the optimal combination of designs (topology optimization and predefined patterns), materials (polylactic acid, acrylonitrile butadiene styrene, and polyamide) and thickness (3, 4, 5 and 6 mm) to maximize the strength and stiffness of the fixator, while minimizing its weight. The optimal parameters were found to correspond to an external fixator device optimized by topology optimization, made in polylactic acid with 4 mm thickness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.