Seed potato degeneration, the reduction in yield or quality caused by an accumulation of pathogens and pests in planting material due to successive cycles of vegetative propagation, has been a long-standing production challenge for potato growers around the world. In developed countries this problem has been overcome by general access to and frequent use of seed, produced by specialized growers, that has been certified to have pathogen and pest incidence below established thresholds, often referred to as certified seed. The success of certified seed in developed countries has concentrated the research and development agenda on the establishment of similar systems in developing countries. Despite these efforts, certified seed has had little penetration into the informal seed systems currently in place in most developing countries. Small-scale farmers in these countries continue to plant seed tubers acquired through the informal seed system, i.e. produced on-farm or acquired from neighbours or local markets. Informal seed tubers frequently have poor health status, leading to significant reductions in yield and/or market value. This review emphasizes the need to refocus management efforts in developing countries on improving the health status of seed tubers in the informal system by integrating disease resistance and on-farm management tools with strategic seed replacement. This 'integrated seed health strategy' can also prolong the good health status of plants derived from certified seed, which would otherwise be diminished due to potential rapid infection from neighbouring fields. Knowledge gaps, development challenges and impacts of this integrated seed health strategy are discussed.
Bacterial wilt, caused by Ralstonia solanacearum, is emerging as a major threat to potato production in Ethiopia, reaching epidemic proportions in the Chencha district recently, with a prevalence of 97% of potato fields in 2015. The recent disease outbreak in the district coincided with a significant introduction of seed potatoes. This research was therefore initiated to genetically characterize the pathogen so as to trace its source, identify its relationship with outbreaks in the rest of the country, and make intervention recommendations. Ralstonia solanacearum isolates were sampled both from seed and ware potato fields in Chencha and from seed potato fields in production regions suspected of being potential sources of the pathogen. Multiplex PCR and phylogenetic analysis of partial endoglucanase gene sequences identified all of the isolates as phylotype IIB sequevar 1. VNTR sequence analysis distinguished 11 different haplotypes, nine of which were unique to the Chencha district. However, one of the haplotypes was common to all seed potato producer regions of Ethiopia except for the Shashemene area. The unique and diverse VNTR haplotypes of the pathogen in Chencha indicates that it is well established in the district. When a geographical map of the VNTR haplotypes was superimposed with the main cross‐regional seed potato distribution pattern of the country, it became evident that the pathogen was being disseminated via latently infected seed from the Holeta‐Jeldu area in the Central Highlands of Ethiopia. Identification of largely uninfected highland districts and multiplication of high‐grade seed potato exclusively in those districts should be given priority.
Bacterial wilt (BW) caused by the Ralstonia solanacearum species complex (RSSC) is a serious threat to potato production in Uganda. However, little is known about the extent of the disease and the type of the pathogen strains involved. A nationwide survey was conducted to study BW prevalence and incidence in potato, and potato tuber and stem samples of potential alternative hosts were collected for pathogen isolation. DNA was extracted from pure cultures for genetic diversity studies. The pathogen was phylotyped by multiplex PCR; then, a subset of isolates was typed at sequevar level. Isolates of the same sequevar were then haplotyped using multilocus tandem repeat sequence typing (TRST) schemes. BW prevalence and incidence in potato farms were 81.4 and 1.7%, respectively. Three RSSC phylotypes were identified, with the majority of the strains belonging to Phylotype II (80%) followed by Phylotype I (18.5%) and III (1.5%). Phylotype I strains belonged to Sequevar 31, and Phylotype II strains belonged to Sequevar 1. Potato-associated Phylotype II Sequevar 1 strains were more diverse (27 TRST haplotypes) than nonpotato Phylotype I (5 TRST haplotypes). Mapping of TRST haplotypes revealed that three TRST haplotypes of Phylotype II Sequevar 1 strains play an important epidemiological role in BW of potato in Uganda being disseminated via latently infected seed. [Formula: see text] Copyright © 2019 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .
Bacterial wilt (BW), caused by Ralstonia solanacearum species complex (RSSC), leads to substantial potato yield losses in Rwanda. Studies were conducted to (i) determine the molecular diversity of RSSC strains associated with BW of potato, (ii) generate a RSSC distribution map for epidemiological inferences, and (iii) test the pathogenicity of predominant RSSC phylotypes on six commercial potato cultivars. Surveys were conducted in 2018 and 2019, tubers from wilting potato plants were collected for pathogen isolation. DNA was extracted from 95 presumptive RSSC strain colonies. The pathogen was phylotyped by multiplex PCR and typed at sequevar level. Phylotype II sequevar 1 strains were then haplotyped using multilocus tandem repeat sequence typing (TRST) schemes. Pathogenicity of one phylotype II strain and two phylotype III strains were tested on cultivars Kinigi, Kirundo, Victoria, Kazeneza, Twihaze and Cruza. Two RSSC phylotypes were identified, phylotype II (95.79%, n = 91) and phylotype III (4.21%, n = 4). This is the first report of phylotype III strains from Rwanda. Phylotype II strains were identified as sequevar 1 and distributed across potato growing regions in the country. The TRST scheme identified 14 TRST haplotypes within the phylotype II sequevar 1 strains with moderate diversity index (HGDI = 0.55). Mapping of TRST haplotypes revealed that a single TRST ‘8-5-12-7-5’ haplotype plays an important epidemiological role in BW of potato in Rwanda. None of the cultivars had complete resistance to the tested phylotypes, level of susceptibility varied among cultivars. Cultivar Cruza, which is less susceptible to phylotype II and III strains, is recommended when planting potatoes in the fields with history of BW.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.