Abstract-Electromagnetic wave propagation in arid and semi-arid regions is influenced by sand and dust storms. Meagre information has hitherto been reported as to the effect of storms on telecommunication systems operating in such regions. This paper presents a survey of current understanding of the wave propagation during storms. In this first part of the review-Part I, detailed parametric assessment of some electrical and mechanical properties affecting wave propagation in sand and dust storms is given. The second part of the review-Part II describes the principle of approach and technology adopted for the investigation highlighting both strengths and drawbacks. The results demonstrate that most authors have calculated signal attenuation effect, revealing that it is not very significant unless during severe storms. A few papers indicate the possibility of more significant cross polarisation. Part I explicitly gives an account of the sand and dust storms' phenomenon, reviews the storms' parameters affecting electromagnetic wave propagations and discusses the microwave and millimeter wave bands.
Abstract-Suspended particles in the atmosphere during sand and dust storms have numerous consequences on electromagnetic wave propagation in arid regions. The electromagnetic wave signal may suffer attenuation and cross polarization upon encounter with the suspended particles. However, meager information has hitherto been reported about effect of storms on the telecommunication systems operating in such regions. This paper presents a survey of current understanding of the electromagnetic wave propagation in sand and dust storms. A review of the literature covering electromagnetic scattering theory and applications is given. The review describes the principle of approach and technology adopted for the investigation highlighting both strengths and drawbacks. Detailed parametric assessment of the effects of storms on wave propagation as it concerns signal attenuation and cross polarization is also carried out. The results demonstrate that most authors have calculated the attenuation effect, revealing that it is not very significant unless very high suspended dust densities are assumed (i.e., during severe sand and dust storms). A few papers indicate the possibility of more significant cross polarisation. The obvious gap in knowledge of this field is finally also clearly established.
Intensity-Duration-Frequency (IDF) relationship is one of the most commonly used tools in water resources engineering. The purpose of this study was to develop rainfall intensity-duration-frequency models/curves for Lokoja Metropolis, Kogi State, Nigeria. Rainfall data was obtained from Nigeria Meteorological Agency (NIMET) and sorted for frequency analysis. Five different frequency analysis techniques namely; Normal, Log-Normal, Gumbel, Pearson Type III and Log-Pearson Type III distributions were used to develop the IDF relationships for Lokoja. Storm durations of 5, 10, 20, 30, 45, 60, 90 and 120 minutes, and return periods of 2, 5, 10, 25, 50 and 100 years were adopted for the derivation of the models. Kolmogorov-Smirnov and Anderson Darling goodness of fit tests were conducted using Easy Fit software to ascertain the best distribution that fits the data. A power-law model was adopted in developing the desired IDF models/ curves for the study area. The results of the goodness of fit showed that all the five distributions were not rejected both at 5% and 1% significance levels except Pearson Type III which recorded Anderson-Darling value of 3.0814 at 30 minutes' duration which is above the critical value of 2.5018 at 5% level of significance. Although, all the distributions gave good results, Log-Pearson Type III distribution was adjudged the best for the study area because of its best ranking. It is recommended that the IDF models/curves derived in this study should be used as tools for prediction of rainfall events for design of hydraulic structures in the study area. Also, more meteorological stations should be created in the country and properly equipped to generate requisite data for planning and design of water resources systems.
The rapid increase in data traffic caused by the proliferation of smart devices has spurred the demand for extremely large-capacity wireless networks. Thus, faster data transmission rates and greater spectral efficiency have become critical requirements in modern-day networks. The ubiquitous 5G is an end-to-end network capable of accommodating billions of linked devices and offering high-performance broadcast services due to its several enabling technologies. However, the existing review works on 5G wireless systems examined only a subset of these enabling technologies by providing a limited coverage of the system model, performance analysis, technology advancements, and critical design issues, thus requiring further research directions. In order to fill this gap and fully grasp the potential of 5G, this study comprehensively examines various aspects of 5G technology. Specifically, a systematic and all-encompassing evaluation of the candidate 5G enabling technologies was conducted. The evolution of 5G, the progression of wireless mobile networks, potential use cases, channel models, applications, frequency standardization, key research issues, and prospects are discussed extensively. Key findings from the elaborate review reveal that these enabling technologies are critical to developing robust, flexible, dependable, and scalable 5G and future wireless communication systems. Overall, this review is useful as a resource for wireless communication researchers and specialists.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.