The aim of this work was to determine TTT diagram of medium carbon V-N
micro-alloyed steel with emphasis on the development of intragranular ferrite
morphologies. The isothermal treatment was carried out at 350, 400, 450, 500,
550 and 600?C. These treatments were interrupted at different times in order
to analyze the evolution of the microstructure. Metallographic evaluation was
done using optical and scanning electron microscopy (SEM). The results show
that at high temperatures (? 500?C) polygonal intragranulary nucleated
ferrite idiomorphs, combined with grain boundary ferrite and pearlite were
produced and followed by an incomplete transformation phenomenon. At
intermediate temperatures (450, 500?C) an interloced acicular ferrite (AF)
microstructure is produced, and at low temperatures (400, 350?C) the sheave
of parallel acicular ferrite plates, similar to bainitic sheaves but
intragranularly nucleated were observed. In addition to sheaf type acicular
ferrite, the grain boundary nucleated bainitic sheaves are observed.
[Projekat Ministartsva nauke Republike Srbije, br. OI174004]
Isothermal transformation characteristics of a medium carbon Ti-V microalloyed steel were investigated using light microscopy, scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS), and by uniaxial compressive testing. Samples austenitized on 1100 °C were isothermally treated in the range from 350 to 600 °C and subsequently water quenched. The final microstructure of the samples held at 350 °C consisted of bainitic sheaves and had compressive yield strength, approximately from 1000 MPa, which is attributed to high dislocation density of low bainite. At 400 and 450 °C, acicular ferrite became prevalent in the microstructure. It was also formed by a displacive mechanism, but the dislocation density was lower, leading to a decrease of compressive yield strength to approximately 700 MPa. The microstructure after the heat treatment at 500 °C consisted of coarse non-polygonal ferrite grains separated by pearlite colonies, principally dislocation free grains, so that the compressive YS reached a minimum value of about 700 MPa. The microstructure of the samples heat-treated at 550 and 600 °C consisted of pearlite and both grain boundary and intragranular ferrite, alongside with some martensite. After 600 s, austenite became stable and transformed to martensite after water quenching. Therefore, the presence of martensite increased the compressive YS to approx. 800 MPa.
The influence of vanadium and nitrogen on microstructure and mechanical properties of medium-carbon steels has been studied by means of metallography and mechanical testing. Vanadium addition to the low nitrogen steel suppresses the formation of ferrite-pearlite following the low reheating temperatures and microstructure consists of bainitic sheaves. Increasing nitrogen at the same vanadium level promotes the acicular ferrite formation. For high reheating temperatures, dominantly acicular ferrite structure in both the low nitrogen and the high nitrogen vanadium steels is obtained. The results suggest that vanadium in solid solution promotes the formation of bainite, whereas the effect of nitrogen is related to the precipitation of VN particles in austenite with high potency for intragranular nucleation of acicular ferrite and to the precipitation of V(C,N) particles in ferrite with high potency for precipitation strengthening. Addition of both vanadium and nitrogen considerably increases the strength level, while CVN20 impact energy increases on changing the microstructure from bainitic ferrite to the fine ferrite-pearlite and acicular ferrite.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.