Metabolic inference from genomic sequence information is a necessary step in determining the capacity of cells to make a living in the world at different levels of biological organization. A common method for determining the metabolic potential encoded in genomes is to map conceptually translated open reading frames onto a database containing known product descriptions. Such gene-centric methods are limited in their capacity to predict pathway presence or absence and do not support standardized rule sets for automated and reproducible research. Pathway-centric methods based on defined rule sets or machine learning algorithms provide an adjunct or alternative inference method that supports hypothesis generation and testing of metabolic relationships within and between cells. Here, we present mlLGPR, multi-label based on logistic regression for pathway prediction, a software package that uses supervised multi-label classification and rich pathway features to infer metabolic networks in organismal and multi-organismal datasets. We evaluated mlLGPR performance using a corpora of 12 experimental datasets manifesting diverse multi-label properties, including manually curated organismal genomes, synthetic microbial communities and low complexity microbial communities. Resulting performance metrics equaled or exceeded previous reports for organismal genomes and identify specific challenges associated with features engineering and training data for community-level metabolic inference.
Motivation Metabolic pathway reconstruction from genomic sequence information is a key step in predicting regulatory and functional potential of cells at the individual, population and community levels of organization. Although the most common methods for metabolic pathway reconstruction are gene-centric e.g. mapping annotated proteins onto known pathways using a reference database, pathway-centric methods based on heuristics or machine learning to infer pathway presence provide a powerful engine for hypothesis generation in biological systems. Such methods rely on rule sets or rich feature information that may not be known or readily accessible. Results Here, we present pathway2vec, a software package consisting of six representational learning based modules used to automatically generate features for pathway inference. Specifically, we build a three layered network composed of compounds, enzymes, and pathways, where nodes within a layer manifest inter-interactions and nodes between layers manifest betweenness interactions. This layered architecture captures relevant relationships used to learn a neural embedding-based low-dimensional space of metabolic features. We benchmark pathway2vec performance based on node-clustering, embedding visualization and pathway prediction using MetaCyc as a trusted source. In the pathway prediction task, results indicate that it is possible to leverage embeddings to improve pathway prediction outcomes. Availability and implementation The software package, and installation instructions are published on github.com/pathway2vec Supplementary information Supplementary data are available at Bioinformatics online.
Metabolic pathway reconstruction from genomic sequence information is a key step in predicting regulatory and functional potential of cells at the individual, population and community levels of organization. Although the most common methods for metabolic pathway reconstruction are gene-centric e.g. mapping annotated proteins onto known pathways using a reference database, pathway-centric methods based on heuristics or machine learning to infer pathway presence provide a powerful engine for hypothesis generation in biological systems. Such methods rely on rule sets or rich feature information that may not be known or readily accessible. Here, we present pathway2vec, a software package consisting of six representational learning based modules used to automatically generate features for pathway inference. Specifically, we build a three layered network composed of compounds, enzymes, and pathways, where nodes within a layer manifest inter-interactions and nodes between layers manifest betweenness interactions. This layered architecture captures relevant relationships used to learn a neural embedding-based low-dimensional space of metabolic features. We benchmark pathway2vec performance based on node-clustering, embedding visualization and pathway prediction using MetaCyc as a trusted source. In the pathway prediction task, results indicate that it is possible to leverage embeddings to improve pathway prediction outcomes. Availability and implementation: The software package, and installation instructions are published on github.com/pathway2vec Contact:
Machine learning methods show great promise in predicting metabolic pathways at different levels of biological organization. However, several complications remain that can degrade prediction performance including inadequately labeled training data, missing feature information, and inherent imbalances in the distribution of enzymes and pathways within a dataset. This class imbalance problem is commonly encountered by the machine learning community when the proportion of instances over class labels within a dataset are uneven, resulting in poor predictive performance for underrepresented classes. Here, we present leADS, multi-label learning based on active dataset subsampling, that leverages the idea of subsampling points from a pool of data to reduce the negative impact of training loss due to class imbalance. Specifically, leADS performs an iterative process to: (i)-construct an acquisition model in an ensemble framework; (ii) select informative points using an appropriate acquisition function; and (iii) train on selected samples. Multiple base learners are implemented in parallel where each is assigned a portion of labeled training data to learn pathways. We benchmark leADS using a corpora of 10 experimental datasets manifesting diverse multi-label properties used in previous pathway prediction studies, including manually curated organismal genomes, synthetic microbial communities and low complexity microbial communities. Resulting performance metrics equaled or exceeded previously reported machine learning methods for both organismal and multi-organismal genomes while establishing an extensible framework for navigating class imbalances across diverse real world datasets.Availability and implementationThe software package, and installation instructions are published on github.com/leADSContactshallam@mail.ubc.ca
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.