Recent work on Alternating-Time Temporal Logic and Coalition Logic has allowed the expression of many interesting properties of coalitions and strategies. However there is no natural way of expressing resource requirements in these logics. This paper presents a Resource-Bounded Coalition Logic (RBCL) which has explicit representation of resource bounds in the language, and gives a complete and sound axiomatisation of RBCL.
We present a framework for verifying systems composed of heterogeneous reasoning agents, in which each agent may have differing knowledge and inferential capabilities, and where the resources each agent is prepared to commit to a goal (time, memory and communication bandwidth) are bounded. The framework allows us to investigate, for example, whether a goal can be achieved if a particular agent, perhaps possessing key information or inferential capabilities, is unable (or unwilling) to contribute more than a given portion of its available computational resources or bandwidth to the problem. We present a novel temporal epistemic logic, BMCL, which allows us to describe a set of reasoning agents with bounds on time, memory and the number of messages they can exchange. The bounds on memory and communication are expressed as axioms in the logic. As an example, we show how to axiomatize a system of agents which reason using resolution and prove that the resulting logic is sound and complete. We then show how to encode a simple system of reasoning agents specified in BMCL in the description language of a model checker, and verify that the agents can achieve a goal only if they are prepared to commit certain time, memory and communication resources.
Context-aware computing is a mobile computing paradigm that helps designing and implementing next generation smart applications, where personalized devices interact with users in smart environments. Development of such applications is inherently complex due to these applications adapt to changing contextual information and they often run on resource-bounded devices. Most of the existing context-aware development frameworks are centralized, adopt client-server architecture, and do not consider resource limitations of context-aware devices. This paper presents a systematic framework to modelling and implementation of resource-bounded multi-agent context-aware systems on Android devices. The proposed framework makes use of semantic technologies for context modelling and reasoning about resource-bounded context-aware agents, Android powered smartphones as development platform, a suitable communication model and declarative rule-based programming as a preferred development language.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.