We describe here the results of antimalarial therapeutic efficacy studies conducted in Cambodia from 2008 to 2010. A total of 15 studies in four sentinel sites were conducted using dihydroartemisinin-piperaquine (DP) for the treatment of Plasmodium falciparum infection and chloroquine (CQ) and DP for the treatment of P. vivax infection. All studies were performed according to the standard World Health Organization protocol for the assessment of antimalarial treatment efficacy. Among the studies of DP for the treatment of P. falciparum, an increase in treatment failure was observed in the western provinces. In 2010, the PCRcorrected treatment failure rates for DP on day 42 were 25% (95% confidence interval [CI] ؍ 10 to 51%) in Pailin and 10.7% (95% CI ؍ 4 to 23%) in Pursat, while the therapeutic efficacy of DP remained high (100%) in Ratanakiri and Preah Vihear provinces, located in northern and eastern Cambodia. For the studies of P. vivax, the day 28 uncorrected treatment failure rate among patients treated with CQ ranged from 4.4 to 17.4%; DP remained 100% effective in all sites. Further study is required to investigate suspected P. falciparum resistance to piperaquine in western Cambodia; the results of in vitro and molecular studies were not found to support the therapeutic efficacy findings. The emergence of artemisinin resistance in this region has likely put additional pressure on piperaquine. Although DP appears to be an appropriate new first-line treatment for P. vivax in Cambodia, alternative treatments are urgently needed for P. falciparum-infected patients in western Cambodia.
In the past decade, malaria control has been successfully implemented in Cambodia, leading to a substantial decrease in reported cases. Wide-spread use of malaria rapid diagnostic tests (RDTs) has revealed a large burden of malaria-negative fever cases, for which no clinical management guidelines exist at peripheral level health facilities. As a first step towards developing such guidelines, a 3-year cross-sectional prospective observational study was designed to investigate the causes of acute malaria-negative febrile illness in Cambodia. From January 2008 to December 2010, 1193 febrile patients and 282 non-febrile individuals were recruited from three health centers in eastern and western Cambodia. Malaria RDTs and routine clinical examination were performed on site by health center staff. Venous samples and nasopharyngeal throat swabs were collected and analysed by molecular diagnostic tests. Blood cultures and blood smears were also taken from all febrile individuals. Molecular testing was applied for malaria parasites, Leptospira, Rickettsia, O. tsutsugamushi, Dengue- and Influenza virus. At least one pathogen was identified in 73.3% (874/1193) of febrile patient samples. Most frequent pathogens detected were P. vivax (33.4%), P. falciparum (26.5%), pathogenic Leptospira (9.4%), Influenza viruses (8.9%), Dengue viruses (6.3%), O. tsutsugamushi (3.9%), Rickettsia (0.2%), and P. knowlesi (0.1%). In the control group, a potential pathogen was identified in 40.4%, most commonly malaria parasites and Leptospira. Clinic-based diagnosis of malaria RDT-negative cases was poorly predictive for pathogen and appropriate treatment. Additional investigations are needed to understand their impact on clinical disease and epidemiology, and the possible role of therapies such as doxycycline, since many of these pathogens were seen in non-febrile subjects.
OBJECTIVE -To determine the prevalence of type 2 diabetes and impaired fasting glycemia (IFG) in a tribal population of Bangladesh. RESEARCH DESIGN AND METHODS-A cluster sampling of 1,287 tribal subjects of age Ն20 years was investigated. They live in a hilly area of Khagrachari in the far northeast of Bangladesh. Fasting plasma glucose, blood pressure, height, weight, waist girth, and hip girth were measured. Lipid fractions were also estimated. We used the 1997 American Diabetes Association diagnostic criteria.RESULTS -The crude prevalence of type 2 diabetes was 6.6% and IFG was 8.5%. The age-standardized (20 -70 years) prevalence of type 2 diabetes (95% CI) was 6.4% (4.96 -7.87) and of IFG was 8.4% (6.48 -10.37). Both tribesmen and women had equal risk for diabetes and IFG. Compared with the lower-income group, the participants with higher income had a significantly higher prevalence of type 2 diabetes (18.8 vs. 3.1%, P Ͻ 0.001) and IFG (17.2 vs. 4.3%, P Ͻ 0.001). Using logistic regression, we found that increased age, high-income group, and increased central obesity were the important risk factors of diabetes.CONCLUSIONS -The prevalence of diabetes in the tribal population was higher than that of the nontribal population of Bangladesh. Older age, higher central obesity, and higher income were proven significant risk factors of diabetes. High prevalence of diabetes among these tribes indicates that the prevalence of diabetes and its complications will continue to increase. Evidently, health professionals and planners should initiate diabetes care in these tribal communities.
Objective:The present study was designed to investigate whether early detection of blood ketone bodies help in diagnosing Diabetic ketoacidosis (DKA) and also to explore whether early changes in blood β-hydroxybutyrate is associated with serum electrolytes and acid-base abnormalities. Research Design and Methods: A total of 122 consecutive type 2 diabetic patients (age 39 ± 15 yrs and body mass index 20.3 ± 2.4 kg/m 2 , mean ± SD) were included in the study. Plasma glucose was measured by glucose oxidase method, glycosylated haemoglobin (HbA 1C ) by high-performance liquid chromatography method, blood β-hydroxybutyrate by biosensor method; urinary acetone was measured by strip based on nitroprusside reaction. Serum urea and creatinine were measured by enzymatic method. Serum electrolytes were measured by ion sensitive electrode technique. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) for urinary ketone method were calculated against the blood ketone. Results: The relative frequencies of DKA, using urinary ketone and blood ketone criteria, were 15.6% (19 out of 122) and 13.9% (17 out of 122), respectively. In contrast, 50% (61 out of 122) patients showed hyperketonemia. Using blood ketone as the reference method, the sensitivity of urinary ketone measurement was found to be 32.6% and specificity was 93.7%. PPV and NPV of urinary ketone against blood ketone were 73.68% and 71.84%, respectively. The DKA subjects, diagnosed by blood ketone criteria, showed significant biochemical derangements as compared to Non-DKA subjects [serum urea (P < 0.001), creatinine (P = 0.02), sodium (P < 0.001), potassium (P < 0.001), total carbon dioxide (P = 0.02), and osmolality (P = 0.02)]. Correlation analysis shows that electrolytes, blood gas, and acid-base status have highly significant correlation with blood ketone levels (Na + -r = −0.303, P < 0.001; K + -r = 0.449, P < 0.001; Mg 2+ -r = −0.174, P < 0.05; TCO 2 -r = −0.573, P < 0.001; venous blood pH-r = −0.659, P < 0.001, and osmolality-r = −0.273, P < 0.002). No such correlation was found with plasma glucose except that for serum sodium (r = −0.301, P < 0.001). Conclusions: Measurement of ketonuria by nitroprusside reaction has considerable limitations with an error of about 25-30% in detecting the ketonemic status of type 2 diabetic patients. The present data also demonstrated that severity of hyperketonemia, but not that of hyperglycemia, reflects the underlying biochemical derangements in type 2 diabetic patients better.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.