Blockchain technology has allowed many abnormal schemes to hide behind smart contracts. This causes serious financial losses, which adversely affects the blockchain. Machine learning technology has mainly been utilized to enable automatic detection of abnormal contract accounts in recent years. In spite of this, previous machine learning methods have suffered from a number of disadvantages: first, it is extremely difficult to identify features that enable accurate detection of abnormal contracts, and based on these features, statistical analysis is also ineffective. Second, they ignore the imbalances and repeatability of smart contract accounts, which often results in overfitting of the model. In this paper, we propose a data-driven robust method for detecting abnormal contract accounts over the Ethereum Blockchain. This method comprises hybrid features set by integrating opcode n-grams, transaction features, and term frequency-inverse document frequency source code features to train an ensemble classifier. The extra-trees and gradient boosting algorithms based on weighted soft voting are used to create an ensemble classifier that balances the weaknesses of individual classifiers in a given dataset. The abnormal and normal contract data are collected by analyzing the open source etherscan.io, and the problem of the imbalanced dataset is solved by performing the adaptive synthetic sampling. The empirical results demonstrate that the proposed individual feature sets are useful for detecting abnormal contract accounts. Meanwhile, combining all the features enhances the detection of abnormal contracts with significant accuracy. The experimental and comparative results show that the proposed method can distinguish abnormal contract accounts for the data-driven security of blockchain Ethereum with satisfactory performance metrics.
Breast cancer death rates are higher than any other cancer in American women. Machine learning-based predictive models promise earlier detection techniques for breast cancer diagnosis. However, making an evaluation for models that efficiently diagnose cancer is still challenging. In this work, we proposed data exploratory techniques (DET) and developed four different predictive models to improve breast cancer diagnostic accuracy. Prior to models, four-layered essential DET, e.g., feature distribution, correlation, elimination, and hyperparameter optimization, were deep-dived to identify the robust feature classification into malignant and benign classes. These proposed techniques and classifiers were implemented on the Wisconsin Diagnostic Breast Cancer (WDBC) and Breast Cancer Coimbra Dataset (BCCD) datasets. Standard performance metrics, including confusion matrices and K-fold cross-validation techniques, were applied to assess each classifier’s efficiency and training time. The models’ diagnostic capability improved with our DET, i.e., polynomial SVM gained 99.3%, LR with 98.06%, KNN acquired 97.35%, and EC achieved 97.61% accuracy with the WDBC dataset. We also compared our significant results with previous studies in terms of accuracy. The implementation procedure and findings can guide physicians to adopt an effective model for a practical understanding and prognosis of breast cancer tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.