Serologic tests for brucellosis aim to detect antibodies produced against membranous lipopolysaccharide of bacteria. Diagnostic use of this method is limited due to false positiveness. This study evaluates an alternative antigen to lipopolysaccharides (LPS), outer membrane 28-precursor-protein, of Brucella melitensis Rev1 for its diagnostic value. Omp28 precursor of B. melitensis Rev1 was cloned, expressed, and purified. 6-His and sumo epitope tags were used to tag the protein at N-termini. Omp28 gene was amplified based on the ORF sequence and cloned into a pETSUMO vector. The recombinant construct was propagated in Escherichia coli One Shot® Mach1™ cells then transformed into E. coli BL21(D3) cells for protein expression. The purified protein was studied in an indirect ELISA for diagnosis of brucellosis. Sera samples from 60 patients were screened by ELISA and the results were compared to Rose Bengal plate test. Recombinant antigen-based iELISA has given a successful outcome with the sensitivity, specificity, positive predictive value, and negative predictive value of 87.8%, 96.2%, 96.6%, and 78.78%, respectively. In conclusion, recombinant production and purification of the immunodominant Omp28 precursor protein has been achieved successfully in a one-step process with efficient yield and can be used for diagnosis of brucellosis in humans.
Many studies have shown that honey with high phenolic contents prevents cancer formation. Furthermore, recent studies have demonstrated that honey can be used for the treatment of cancer as well as cancer prevention. Antineoplastic effects of honey are often associated with their antioxidant phenolic contents. However, very few studies have dealt with the association of phenolic contents of honeys in terms of antiproliferative effects. The aim of this study was, therefore, to elucidate the cytotoxic, genotoxic, apoptotic, and reactive oxygen species (ROS) generating effects of honey samples on the basis of their phenolic and flavonoid contents. Fourteen different honey varieties were collected from various parts of Turkey, and their characteristics regarding total phenols, flavonoids, and antioxidant contents were determined to test their effects on gastric cancer cells (AGS). For convenience, 2 honey varieties were selected, namely, Ida Mountains Quercus pyrenaica honeydew honey (QPHH-IM) having the highest phenolic and antioxidant content and Canakkale multifloral honey (MFH-C) with the lowest phenolic and antioxidant content. Levels of 11 different phenolic compounds in QPHH-IM and MFH-C samples were determined by LC-MS/MS. AGS cells were incubated with different concentrations of QPHH-IM and MFH-C for 24 hours, then the cell viability, DNA damage, apoptosis, and generation of ROS were determined. We found that QPHH-IM had more cytotoxic, genotoxic, and apoptotic effects than that of MFH-C. We think that these effects are probably related to pro-oxidant activities due to the high phenolic contents present. Therefore, further research on high-phenolic honey may contribute to the future development of cancer therapeutics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.