Novel analytical models for accurately modelling the shape and length of bond wires in dependence on the loop height (Lh(max)), distance between the bonding positions (d(bp)) and the thickness of the metallisation (t(met.)) on which the wires are bonded, are derived in this work. These analytical models, which are based on the Gaussian distribution function, are applied to (i) develop realistic three-dimensional electromagnetic models of bond wire antennas and study their radiation characteristics and (ii) study the impact of process tolerances of bond wire parameters on the performance of the antennas. For these studies, a 42 GHz half-loop bond wire antenna is considered as an example. It is designed, fabricated and measured. Our results reveal that dbp has the most significant impact on the antenna performance. For example, -10% fluctuations in dbp causes similar to 2.5 GHz shift in the resonance frequency and 24% reduction in the maximum realised gain. Since this may completely detune the antenna, it is recommended that fluctuations in d(bp) should be kept below 10% during the manufacturing process. Good correlation is obtained between measurement and simulation results
In this paper, a novel analytical model for calculating the partial self-inductance of bond wires in dependent on bonding parameters such as loop height, distance between bonding positions and the thickness of the metallization on which the wire is bonded, is derived for the first time. An excellent correlation is obtained between inductances extracted using our proposed model and those extracted using Ansys Q3D, with a maximum deviation of approximately 1%. Furthermore, methods for minimizing the inductance of bond wires, based on the definitions of loop and partial inductances are discussed. Test bond wire structures are designed, fabricated and measured to quantify the implemented method
As a result of their myriad of advantages over silicon and other conventional substrate technologies, glass substrates have received significant attention from the electronic packaging and system integration community worldwide. So far, most of the research effort on glass has concentrated on developing methods for fabricating cylindrical through glass vias (TGVs). However, to fully evaluate the potential of glass as an interposer material for microelectronic systems with computing and communication functions, an extensive characterization of interconnects and RF components on these substrates must be carried out. In this contribution, we go beyond state-of-the-art research and present an in-depth characterization of TGVs, coplanar lines and 60 GHz coplanar excited patch antennas on two glass substrates. One of these substrates has a low alkaline content (Borofloat33®) and the other is alkaline-free (AF32®). The effects of these glass materials on the RF performance of TGVs, coplanar lines and 60 GHz antennas are extensively studied, and recommendations for performance optimization are proposed. For experimental verification, test samples are fabricated and measured. Very good correlation is obtained between the measurement and simulation results from 100 MHz to 100 GHz.
Due to the multitude of advantages bond wire antennas have over conventional planar antennas (especially on-chip planar antennas), they have received much research attention within the last four years. The focus of the contributions made so far has been on exploiting different configurations of single-element and array bond wire antennas for short-range applications at RF/microwave frequencies. However, the effects of process tolerances of bond wires on the radiation characteristics of bond wire antennas have not been studied in published literature. Therefore in this paper, we investigate the impact of up to 20% fluctuations in the parameters of bond wires on the performance of 42 GHz and 60 GHz bond wire antennas. Our results reveal that the length and radius of bond wires are the most and least sensitive parameters, respectively. Furthermore, the severity of the impact of process tolerances depends on the impedance bandwidth of the original antenna, before considering the tolerances. For example, a 10% change in the length of a bond wire causes the resonance frequency of a 42 GHz antenna to be shifted out of the specified 3GHz bandwidth (40.5 GHz–43.5 GHz) required for point-to-point communication. However, although a 10% change in length of a bond wire yields a 2.5 GHz shift in the resonance frequency of a 60 GHz bond wire antenna, it doesn’t completely detune the antenna because of the original 6 GHz bandwidth available, prior to the fluctuation. Therefore, to prevent the impact of process tolerances from severely degrading the performance bond wire antennas, these antennas should be designed to have larger bandwidths than specified. For experimental verification, a bond wire antenna was designed, fabricated and measured. Very good correlation was obtained between measurement and simulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.