Software-defined networking (SDN) is a new networking paradigm that provides centralized control, programmability, and a global view of topology in the controller. SDN is becoming more popular due to its high audibility, which also raises security and privacy concerns. SDN must be outfitted with the best security scheme to counter the evolving security attacks. A Distributed Denial-of-Service (DDoS) attack is a network attack that floods network links with illegitimate data using high-rate packet transmission. Illegitimate data traffic can overload network links, causing legitimate data to be dropped and network services to be unavailable. Low-rate Distributed Denial-of-Service (LDDoS) is a recent evolution of DDoS attack that has been emerged as one of the most serious vulnerabilities for the Internet, cloud computing platforms, the Internet of Things (IoT), and large data centers. Moreover, LDDoS attacks are more challenging to detect because this attack sends a large amount of illegitimate data that are disguised as legitimate traffic. Thus, traditional security mechanisms such as symmetric/asymmetric detection schemes that have been proposed to protect SDN from DDoS attacks may not be suitable or inefficient for detecting LDDoS attacks. Therefore, more research studies are needed in this domain. There are several survey papers addressing the detection mechanisms of DDoS attacks in SDN, but these studies have focused mainly on high-rate DDoS attacks. Alternatively, in this paper, we present an extensive survey of different detection mechanisms proposed to protect the SDN from LDDoS attacks using machine learning approaches. Our survey describes vulnerability issues in all layers of the SDN architecture that LDDoS attacks can exploit. Current challenges and future directions are also discussed. The survey can be used by researchers to explore and develop innovative and efficient techniques to enhance SDN’s protection against LDDoS attacks.
Software Defined Networks (SDN) can logically route traffic and utilize underutilized network resources, which has enabled the deployment of SDN-enabled Internet of Things (IoT) architecture in many industrial systems. SDN also removes bottlenecks and helps process IoT data efficiently without overloading the network. An SDN-based IoT in an evolving environment is vulnerable to various types of distributed denial of service (DDoS) attacks. Many research papers focus on highrate DDoS attacks, while few address low-rate DDoS attacks in SDN-based IoT networks. There's a need to enhance the accuracy of LDDoS attack detection in SDN-based IoT networks and OpenFlow communication channel. In this paper, we propose LDDoS attack detection approach based on deep learning (DL) model that consists of an activation function of the Long-Short Term Memory (LSTM) to detect different types of LDDoS attacks in IoT networks by analyzing the characteristic values of different types of LDDoS attacks and natural traffic, improve the accuracy of LDDoS attack detection, and reduce the malicious traffic flow. The experiment result shows that the model achieved an accuracy of 98.88%. In addition, the model has been tested and validated using benchmark Edge IIoTset dataset which consist of cyber security attacks.
The increase in size and complexity of the Internet has led to the introduction of Software Defined Networking (SDN). SDN is a new networking paradigm that breaks the limitations of traditional IP networks and upgrades the current network infrastructures. However, like traditional IP networks, network failures may also occur in SDN. Multiple research studies have discussed this problem by using a variety of techniques. Among them is the use of the community detection method is one of the failure recovery technique for SDN. However, this technique have not considered the specific problem of multiple link multi-community failure and inter-community link failure scenarios. This paper presents a community detection-based routing algorithm (CDRA) for link failure recovery in SDN. The proposed CDRA scheme is efficient to deal with single link intra-community failure scenarios and multiple link multi-community failure scenarios and is also able to handle the inter-community link failure scenarios in SDN. Extensive simulations are performed to evaluate the performance of the proposed CDRA scheme. The simulation results depicts that the proposed CDRA scheme have better simulations results and reduce average round trip time by 35.73%, avg data packet loss by 1.26% and average end to end delay 49.3% than the Dijkstra based general recovery algorithm and also can be used on a large scale network platform.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.