Dromedaries have been fundamental to the development of human societies in arid landscapes and for long-distance trade across hostile hot terrains for 3,000 y. Today they continue to be an important livestock resource in marginal agro-ecological zones. However, the history of dromedary domestication and the influence of ancient trading networks on their genetic structure have remained elusive. We combined ancient DNA sequences of wild and early-domesticated dromedary samples from arid regions with nuclear microsatellite and mitochondrial genotype information from 1,083 extant animals collected across the species' range. We observe little phylogeographic signal in the modern population, indicative of extensive gene flow and virtually affecting all regions except East Africa, where dromedary populations have remained relatively isolated. In agreement with archaeological findings, we identify wild dromedaries from the southeast Arabian Peninsula among the founders of the domestic dromedary gene pool. Approximate Bayesian computations further support the "restocking from the wild" hypothesis, with an initial domestication followed by introgression from individuals from wild, now-extinct populations. Compared with other livestock, which show a long history of gene flow with their wild ancestors, we find a high initial diversity relative to the native distribution of the wild ancestor on the Arabian Peninsula and to the brief coexistence of early-domesticated and wild individuals. This study also demonstrates the potential to retrieve ancient DNA sequences from osseous remains excavated in hot and dry desert environments.anthropogenic admixture | Camelus dromedarius | demographic history | paleogenetics | wild dromedary T he dromedary (Camelus dromedarius) is one of the largest domestic ungulates and one of the most recent additions to livestock. Known as the "ship of the desert" (1), it enabled the transportation of people and valuable goods (e.g., salt, incense, spices) over long distances connecting Arabia, the Near East, and North Africa. This multipurpose animal has outperformed all other domestic mammals, including the donkey, in arid environments and continues to provide basic commodities to millions of people inhabiting marginal agro-ecological zones. In the current context of advancing desertification and global climate change, there is renewed interest in the biology and production traits of the species (2), with the first annotated genome drafts having been recently released (3, 4). SignificanceThe dromedary is one of the largest domesticates, sustainably used in arid and hostile environments. It provides food and transport to millions of people in marginal agricultural areas. We show how important long-distance and back-and-forth movements in ancient caravan routes shaped the species' genetic diversity. Using a global sample set and ancient mitochondrial DNA analyses, we describe the population structure in modern dromedaries and their wild extinct ancestors. Phylogenetic analyses of ancient and modern dro...
The African cattle provide unique genetic resources shaped up by both diverse tropical environmental conditions and human activities, the assessment of their genetic diversity will shade light on the mechanism of their remarkable adaptive capacities. We therefore analyzed the genetic diversity of cattle samples from Nigeria using both maternal and paternal DNA markers. Nigerian cattle can be assigned to 80 haplotypes based on the mitochondrial DNA (mtDNA) D-loop sequences and haplotype diversity was 0.985 + 0.005. The network showed two major matrilineal clustering: the dominant cluster constituting the Nigerian cattle together with other African cattle while the other clustered Eurasian cattle. Paternal analysis indicates only zebu haplogroup in Nigerian cattle with high genetic diversity 1.000 ± 0.016 compared to other cattle. There was no signal of maternal genetic structure in Nigerian cattle population, which may suggest an extensive genetic intermixing within the country. The absence of Bos indicus maternal signal in Nigerian cattle is attributable to vulnerability bottleneck of mtDNA lineages and concordance with the view of male zebu genetic introgression in African cattle. Our study shades light on the current genetic diversity in Nigerian cattle and population history in West Africa.
Despite the recognised need for education and training in laboratory animal science (LAS) and ethics in Africa, access to such opportunities has historically been limited. To address this, the Pan-African Network for Laboratory Animal Science and Ethics (PAN-LASE) was established to pioneer a support network for the development of education and training in LAS and ethics across the African continent. In the 4.5 years since the establishment of PAN-LASE, 3635 individuals from 28 African countries have participated in our educational activities. Returning to their home institutions, they have both established and strengthened institutional and regional hubs of knowledge and competence across the continent. Additionally, PAN-LASE supported the development of guidelines for establishment of institutional Animal Ethics Committees, a critical step in the implementation of ethical review processes across the continent, and in enhancing animal welfare and scientific research standards. Key challenges and opportunities for PAN-LASE going forward include the formalisation of the network; the sustainability of education and training programmes; implementation of effective hub-and-spoke models of educational provision; strengthening governance frameworks at institutional, national and regional levels; and the availability of Africa-centric open access educational resources. Our activities are enhancing animal welfare and the quality of animal research undertaken across Africa, enabling African researchers to undertake world-leading research to offer solutions to the challenges facing the continent. The challenges, successes and the lessons learnt from PAN-LASE’s journey are applicable to other low- and middle-income countries across the world seeking to enhance animal welfare, research ethics and ethical review in their own country or region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.