In this study, several biowaste materials are screened for adsorptive removal of methylene blue (MB) from synthetic water. Among the tested adsorbents, barley (Hordeum vulgare) bran (BB) and enset (Ensete ventricosum midrib leaf, EVML) were selected for further evaluation of MB (a model cationic dye) adsorption. Batch MB adsorption performance of BB and EVML adsorbents was significantly high in a wide pH range (4-9). The well fitting of experimental data with pseudosecond-order kinetic model suggests a monolayer adsorption of MB. The MB adsorption onto both adsorbents was fit well with the Langmuir isotherm model with maximum MB adsorption capacities of 63.2 mg/g (BB) and 35.5 mg/g (EVML). The biowaste materials exhibit considerable adsorption capacity for cationic dye (MB), perform well under acidic and basic conditions, and are reusable. Therefore, the use of these materials as adsorbents may have an environmental benefit in terms of the conversion of wastes into valuable materials. Further studies are suggested to investigate the performance of these adsorbents in a continuous mode using real wastewater.
Fluoride health problem is a great concern worldwide, most often as a result of groundwater intake. Thus, determination of fluoride is vital to take appropriate measures upon fluoride contamination of water. Potentiometric method of analysis is reliable for the determination of fluoride in various samples. In addition, spectroscopic methods are found important to quantify fluoride levels from water; however, several factors hinder its easier determination. Among the bottlenecks, the use of toxic chemicals and tedious steps in preparing chemicals (e.g., SPADNS method) are to mention a few. In this study, a spectrophotometric method was developed for the determination of fluoride from groundwater using Eriochrome Black T (EBT) as a spectroscopic reagent. Experimental parameters that influence the determination of fluoride including ligand type, kinetics, pH, and ligand-to-metal ratio were assayed. Evaluation of fluoride levels showed that Beer–Lambert’s law is obeyed in the range of 0.3–5.0 mg/L at 544 nm. The calibration curve, resulting in good linearity (R2 = 0.9997), was considered during quantitative analysis of the samples and in the spiking analysis. The limits of detection (LOD) and quantification (LOQ) of the method were found to be 0.19 and 0.64 mg/L, respectively. The precision studied in terms of intraday and interday at three concentration levels showed less than 5.4% RSD. Applicability of the method was investigated by analyzing groundwater samples spiked with fluoride standards, and satisfactory recoveries in the range of 98.18–111.4 were demonstrated. The developed spectrophotometric method has been successfully applied for fluoride determinations in groundwater samples. Thus, it could be used as an attractive alternative for the determination of fluoride from groundwater.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.