Varroa destructor has been identified as a major culprit responsible for the losses of millions of honeybee colonies. Varroa sensitive hygiene (VSH) is a suite of behaviors from adult bees to suppress mite reproduction by uncapping and/or removing mite infested pupae from a sealed brood. Despite the efforts to elucidate the molecular underpinnings of VSH, they remain largely unknown. We investigated the proteome of mushroom bodies (MBs) and antennae of adult bees with and without VSH from a stock selected for VSH based on their response to artificially Varroa-infected brood cells by near-infrared camera observation. The pupal hemolymph proteome was also compared between the VSH-line and the line that was not selected for VSH. The identified 8609 proteins in the hemolymph, MBs, and antennae represent the most depth coverage of the honeybee proteome (>55%) to date. In the hemolymph, the VSH-line adapts a unique strategy to boost the social immunity and drive pupal organogenesis by enhancing energy metabolism and protein biosynthesis. In MBs, the up-regulated proteins implicated in neuronal sensitivity suggest their roles to promote the execution of VSH by activation of synaptic vesicles and calcium channel activities. In antennae, the highly expressed proteins associated with sensitivity of olfactory senses and signal transmissions signify their roles by inputting a strong signal to the MBs for initiating VSH. These observations illustrate that the enhanced social immunities and olfactory and neuronal sensitivity play key roles in the combat against Varroa infestation. The identified candidate markers may be useful for accelerating marker-associated selection for VSH to aid in resistance to a parasite responsible for decline in honeybee health.
The mandibular glands (MGs) of honeybee workers are vital for the secretion of lipids, for both larval nutrition and pheromones. However, knowledge of how the proteome controls MG development and functionality at the different physiological stages of worker bees is still lacking. We characterized and compared the proteome across different ages of MGs in Italian bees (ITBs) and Royal Jelly (RJ) bees (RJBs), the latter being a line bred for increasing RJ yield, originating from the ITB. All 2000 proteins that were shared by differently aged MGs in both bee lines (>4000 proteins identified in all) were strongly enriched in metabolizing protein, nucleic acid, small molecule, and lipid functional groups. The fact that these shared proteins are enriched in similar groups in both lines suggests that they are essential for basic cellular maintenance and MG functions. However, great differences were found when comparing the proteome across different MG phases in each line. In newly emerged bees (NEBs), the unique and highly abundant proteins were enriched in protein synthesis, cytoskeleton, and development related functional groups, suggesting their importance to initialize young MG development. In nurse bees (NBs), specific and highly abundant proteins were mainly enriched in substance transport and lipid synthesis, indicating their priority may be in priming high secretory activity in lipid synthesis as larval nutrition. The unique and highly abundant proteins in forager bees (FBs) were enriched in lipid metabolism, small molecule, and carbohydrate metabolism. This indicates their emphasis on 2-heptanone synthesis as an alarm pheromone to enhance colony defense or scent marker for foraging efficiency. Furthermore, a wide range of different biological processes was observed between ITBs and RJBs at different MG ages. Both bee stocks may adapt different proteome programs to drive gland development and functionality. The RJB nurse bee has reshaped its proteome by enhancing the rate of lipid synthesis and minimizing degradation to increase 10-hydroxy-2-decenoic acid synthesis, a major component of RJ, to maintain the desired proportion of lipids in increased RJ production. This study contributes a novel understanding of MG development and lipid metabolism, and a potential starting point for lipid or pheromone biochemists as well as developmental geneticists.
Wax moths are ubiquitous pests of honey bee colonies that destroy beeswax combs. To study the efficiency of different preventing techniques in local conditions, five treatments were assigned to purposively selected wax moth susceptible colonies. The results have revealed that 66.7% of the colonies have absconded from control treatments due to wax moth infestation. Colonies assigned to supplementary feeding (with 16391.3 bee population) were significantly better than other treatments in preventing serious wax moth attacks while the control group possessed the lowest value (12588.23). This further elucidated that strong colonies had better strength to defend pest attacks. Even if the overall average number of wax moth infected combs was 1.16 combs per colony, tobacco leaf smoke had the lowest (0.39) infected combs. Furthermore, the control group was the highest in the number of counted wax moth larvae (471) where tobacco leaf smoking was with the lowest value (43). In conclusion, supplementary feeding and appropriate use of tobacco leaf smoke shall be used as a combined recommendation in reducing the damage. Moreover, training of beneficiaries in appropriate use of tested methods and seasonal colony management techniques should be included in the package. Based on the current trends in wax moth damage in the country, studies on all possible safe preventive strategies will be a focus of future national research directions. Thus, this contribution, we believe, will be used as a building block. Of course, attempts in developing a natural enemy against wax moth adults shall keep the balance in the environment as the insect is also beneficial in the ecology.
: Beekeeping serves as a source of additional cash income for hundreds of thousands of farmer beekeepers in the country and plays a significant role in conserving the natural resources and contributes to
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.