Perovskite solar cells (PSCs) are one of the most promising emerging energy-conversion technologies because of their high power conversion efficiencies (PCEs) and potentially low fabrication cost. To improve PCE, it is necessary to develop PSCs with good interfacial engineering to reduce the trap states and carrier transport barriers present at the various interfaces of the PSCs' architecture. This work reports a facile method to improve the interface between the perovskite absorber layer and the hole transport layer (HTL) by adding a small amount of acetonitrile (ACN) in the Spiro-OMeTAD precursor solution. This small amount of ACN dissolves the surface of the perovskite layer, allowing the formation of an interdiffusion structure between perovskite and Spiro-OMeTAD layers. This modification allows for an improved electrical contact, enhanced collection of holes, and reduced recombination losses at the interface between the perovskite and Spiro-OMeTAD layers and, consequently, enhances the PCE. A maximum PCE of 19.7% with low hysteresis and a steady-state power conversion efficiency of 19.0% is obtained for optimized PSCs.
Controlling the thickness and homogeneity of thin passivation layers on polycrystalline perovskite thin films is challenging. We report CVD polymerization of poly(p-xylylene) layers at controlled substrate temperatures for efficient surface passivation of perovskite films.
In this work, we introduce a bilayer ETL composed of lithium (Li)-doped compact SnO2 (c-SnO2) and potassium-capped SnO2 nanoparticle layers (NP-SnO2) to enhance the electron extraction and charge transport properties in perovskite solar cells, resulting in an improved PCE and a strongly reduced J–V hysteresis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.