Combined DTI and DWI detected allograft dysfunction early after kidney transplantation and correlated with allograft fibrosis. J. Magn. Reson. Imaging 2016;44:112-121.
Impairment of renal function often occurs in patients with liver disease. Hepatorenal syndrome is a significant cause of acute kidney injury (AKI) in patients with cirrhosis (HRS-AKI, type 1). Causes of non-HRS-AKI include cholemic nephropathy (CN), a disease that is characterized by intratubular bile casts and tubular injury. As data on patients with CN are obtained primarily from case reports or autopsy studies, we aimed to investigate the frequency and clinical course of CN. We identified 149 patients who underwent kidney biopsy between 2000 and 2016 at theDepartment of Gastroenterology, Hepatology and Endocrinology at Hannover Medical School. Of these, 79 had a history of liver disease and deterioration of renal function. When applying recent European Association for the Study of the Liver criteria, 45 of 79 patients (57%) presented with AKI, whereas 34 patients (43%) had chronic kidney disease (CKD). Renal biopsy revealed the diagnosis of CN in 8 of 45 patients with AKI (17.8%), whereas none of the patients with CKD was diagnosed with CN. Univariate analysis identified serum bilirubin, alkaline phosphatase, and urinary bilirubin and urobilinogen as predictive factors for the diagnosis of CN. Histological analysis of AKI patients with normal bilirubin, elevated bilirubin, and the diagnosis of CN revealed loss of aquaporin 2 (AQP2) expression in collecting ducts in patients with elevated bilirubin and CN. Biopsy-related complications requiring medical intervention occurred in 4 of 79 patients (5.1%). Conclusion : CN is a common finding in patients with liver disease, AKI, and highly elevated bilirubin. Loss of AQP2 in AKI patients with elevated bilirubin and CN might be the result of toxic effects of cholestasis and in part be responsible for the impairment of renal function.
Inflammation impairs renal allograft survival but is difficult to quantify by eye at low densities. Here we measured leukocyte abundance in early surveillance biopsies by digital image analysis to test for a role of chemokine receptor genotypes and analyze the predictive value of leukocyte subsets to allograft function. In six-week surveillance biopsies, T-cell (CD3), B-cell (CD20), macrophage (CD68), and dendritic cell (CD209) densities were assessed in whole slide scans. Renal cortical CD3, CD20, and CD68 were significantly higher in histologic rejection. The CCR2 V64I genotype was associated with lower CD3 and CD209 densities. Above-median CD68 density was significantly associated with lower combined patient and graft survival with a hazard ratio of 3.5 (95% confidence interval 1.1-11.0). Both CD20 and CD68 densities inversely correlated with estimated glomerular filtration rate (eGFR) four years after transplantation. Additionally, CD68 correlated with eGFR loss. Among histological measurements including a complete Banff classification, only CD68 density was a significant predictor of an eGFR under 30ml/min after four years (odds ratio 7.4, 1.8-31.0) and part of the best eGFR prediction set in a multivariable linear regression analysis of multiple clinical and pathologic parameters. In a second independent cohort, the original CD68 median maintained its discriminative power for survival and eGFR. Thus, digital high-resolution assessment of CD68 leukocyte infiltration significantly improves prognostic value of early renal transplant biopsies.
BackgroundKidney transplantation (ktx) in mice is used to learn about rejection and to develop new treatment strategies. Past studies have mainly been based on histological or molecular biological methods. Imaging techniques to monitor allograft pathology have rarely been used.MethodsHere we investigated mice after isogenic and allogenic ktx over time with functional MRI with diffusion-weighted imaging (DWI) and mapping of T2-relaxation time (T2-mapping) to assess graft inflammation and edema formation. To characterize graft pathology, we used PAS-staining, counted CD3-positive T-lymphocytes, analyzed leukocytes by means flow cytometry.ResultsDWI revealed progressive restriction of diffusion of water molecules in allogenic kidney grafts. This was paralleled by enhanced infiltration of the kidney by inflammatory cells. Changes in tissue diffusion were not seen following isogenic ktx. T2-times in renal cortex were increased after both isogenic and allogenic transplantation, consistent with tissue edema due to ischemic injury following prolonged cold ischemia time of 60 minutes. Lack of T2 increase in the inner stripe of the inner medulla in allogenic kidney grafts matched loss of tubular autofluorescence and may result from rejection-driven reductions in tubular water content due to tubular dysfunction and renal functional impairment.ConclusionsFunctional MRI is a valuable non-invasive technique for monitoring inflammation, tissue edema and tubular function. It permits on to differentiate between acute rejection and ischemic renal injury in a mouse model of ktx.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.