Volatile organic compounds (VOCs) are commonly used as solvents in various industrial settings. Many of them present a challenge to receiving environments, due to their toxicity and low bioavailability for degradation. Microorganisms are capable of sensing and responding to their surroundings and this makes them ideal detectors for toxic compounds. This study investigates the global transcriptomic responses of Escherichia coli K-12 to selected VOCs at sub-toxic levels. Cells grown in the presence of VOCs were harvested during exponential growth, followed by whole transcriptome shotgun sequencing (RNAseq). The analysis of the data revealed both shared and unique genetic responses compared to cells without exposure to VOCs. Results suggest that various functional gene categories, for example, those relating to Fe/S cluster biogenesis, oxidative stress responses and transport proteins, are responsive to selected VOCs in E. coli. The differential expression (DE) of genes was validated using GFP-promoter fusion assays. A variety of genes were differentially expressed even at non-inhibitory concentrations and when the cells are at their balanced-growth. Some of these genes belong to generic stress response and others could be specific to VOCs. Such candidate genes and their regulatory elements could be used as the basis for designing biosensors for selected VOCs.
The structure and activity of electrochemically active biofilms (EABs) are usually investigated on flat electrodes. However, real world applications such as wastewater treatment and bioelectrosynthesis require tridimensional electrodes to increase surface area and facilitate EAB attachment. The structure and activity of thick EABs grown on high surface area electrodes are difficult to characterize with electrochemical and microscopy methods. Here, the authors adopt a stacked electrode configuration to simulate the high surface and the tridimensional structure of an electrode for large-scale EAB applications. Each layer of the stacked electrode is independently characterized using confocal laser scanning microscopy (CLSM) and digital image processing. Shewanella oneidensis MR-1 biofilm on stacked carbon veil electrodes is grown under constant oxidative potentials (0, +200, and +400 mV versus Ag/AgCl) until a stable current output is obtained. The textural, aerial, and volumetric parameters extracted from CLSM images allow tracking of the evolution of morphological properties within the stacked electrodes. The electrode layers facing the bulk liquid show higher biovolumes compared with the inner layer of the stack. The electrochemical performance of S. oneidensis MR-1 is directly linked to the overall biofilm volume as well as connectivity between cell clusters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.