Transplantation of adult bone marrow-derived mesenchymal stem cells has been proposed as a strategy for cardiac repair following myocardial damage. However, poor cell viability associated with transplantation has limited the reparative capacity of these cells in vivo. In this study, we genetically engineered rat mesenchymal stem cells using ex vivo retroviral transduction to overexpress the prosurvival gene Akt1 (encoding the Akt protein). Transplantation of 5 x 10(6) cells overexpressing Akt into the ischemic rat myocardium inhibited the process of cardiac remodeling by reducing intramyocardial inflammation, collagen deposition and cardiac myocyte hypertrophy, regenerated 80-90% of lost myocardial volume, and completely normalized systolic and diastolic cardiac function. These observed effects were dose (cell number) dependent. Mesenchymal stem cells transduced with Akt1 restored fourfold greater myocardial volume than equal numbers of cells transduced with the reporter gene lacZ. Thus, mesenchymal stem cells genetically enhanced with Akt1 can repair infarcted myocardium, prevent remodeling and nearly normalize cardiac performance.
Background
—
Ischemia and oxidative stress are the leading mechanisms for tissue injury. An ideal strategy for preventive/protective therapy would be to develop an approach that could confer long-term transgene expression and, consequently, tissue protection from repeated ischemia/reperfusion injury with a single administration of a therapeutic gene. In the present study, we used recombinant adeno-associated virus (rAAV) as a vector for direct delivery of the cytoprotective gene heme oxygenase-1 (HO-1) into the rat myocardium, with the purpose of evaluating this strategy as a therapeutic approach for long-term protection from ischemia-induced myocardial injury.
Methods and Results
—
Human HO-1 gene (hHO-1) was delivered to normal rat hearts by intramyocardial injection. AAV-mediated transfer of the hHO-1 gene 8 weeks before acute coronary artery ligation and release led to a dramatic reduction (>75%) in left ventricular myocardial infarction. The reduction in infarct size was accompanied by decreases in myocardial lipid peroxidation and in proapoptotic Bax and proinflammatory interleukin-1β protein abundance, concomitant with an increase in antiapoptotic Bcl-2 protein level. This suggested that the transgene exerts its cardioprotective effects in part by reducing oxidative stress and associated inflammation and apoptotic cell death.
Conclusions
—
This study documents the beneficial therapeutic effect of rAAV-mediated transfer, before myocardial injury, of a cytoprotective gene that confers long-term myocardial protection from ischemia/reperfusion injury. Our data suggest that this novel “pre-event” gene transfer approach may provide sustained tissue protection from future repeated episodes of injury and may be beneficial as preventive therapy for patients with or at risk of developing coronary ischemic events.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.