Our objective was to assess whether adenotonsillotomy improved pharyngeal compliance, which is a risk factor for sleep-disordered breathing. Otherwise healthy children underwent Obstructive Sleep Apnea (OSA)-18 questionnaire and a pre- and postoperative acoustic pharyngometry in both sitting and supine positions, allowing the measurement of the volume of the palatine tonsil region and pharyngeal compliance. Thirty-five children (median age 5.3 years) were enrolled; they were reevaluated at a median of 18 days (25th-75th percentiles, 15-25) after surgery. Participants were compared according to a normal (n = 18) or an increased (n = 17) preoperative pharyngeal compliance. Surgery was associated with a significant decrease in OSA-18 and Brodsky scores, with a median increase in palatine volume of 0.13 cm3 (25th-75th percentiles, 0.00-0.73). A decrease in pharyngeal compliance was observed in children with increased preoperative compliance. The variation of palatine volume after surgery was positively related to the variation of pharyngeal compliance, suggesting that obstruction relief was associated with muscle relaxation in children with normal preoperative compliance.
Assuring integrity of offshore well Conductor is one of the challenges in the aged giant offshore fields operating with 1500+ wells. Such fields should have a robust and efficient integrity management system for inspection and assessment of well conductors through the well life cycle. Offshore well Conductors form the secondary load-bearing element in a well, primary being the surface casing. A practical approach in assessing the structural integrity of the well conductor is proposed in this paper. Wells were classifying into five subgroups; optimized Inspection and Integrity Assessment methods used to establish the structural integrity of conductors; which were evaluated and validated by a 3rd part consultant. The assessment results indicate how over-conservative assumptions in engineering assessment may mislead operators to categorize wells into higher risk. Assessment was performed utilizing various modeling software. Reliability based approach was adopted to accommodate uncertainties in data utilizing appropriate engineering judgement to tackle data gaps. Average thickness measured at discrete elevations was compared with the calculated minimum required thickness (MRT) to assess the structural integrity status of conductors. This approach helped in the decision making and planning for risk mitigation repairs. The results of optimized inspection techniques and structural assessment methodology lead to establishment of clear pattern for critical well conductors and applied to the groups to decide on maintenance strategy. The conductor wall thickness data measured from automated thickness measurement technique is matching with the measured data from manual thickness measurements. The average wall thickness at each elevation, obtained from the raw automated thickness measurement technique data to be used for assessment of the conductor. After building good confidence in the mode of failure the results indicated that manual thickness measurement technique is sufficient to assess the structural integrity of the conductors. The consultant has performed parametric studies to validate the Minimum Required Thickness (MRT) for the most onerous well in the group; by modelling the boundary conditions of conductor span between the guides, the critical water depth, well depth etc. Sensitivity studies were performed considering the environmental loading due to wind, wave, current; vortex induced vibrations, cement height behind the pipes etc. From the new findings the integrity status of the current wells risk ranking will be reviewed and if the average measured thickness is greater than the MRT then a repair program is no more required. The resource utilization was optimized based on the final outcome of the exercise. A procedure based optimized inspection techniques and structural integrity assessments to the group the well conductors resulted in the revision of risk ranking of wells, efficient maintenance planning and achieve high-cost optimization for its life extension. The outcome of the consultancy study will also substantiate our current method of conductor assessment and decision for repair based on risk-based approach. Based on the learnings this paper will be focusing on utilizing optimal inspection and assessment approach.
Annuli pressure if not controlled and managed may result in uncontrolled release of high-pressure hydrocarbon fluids from reservoir to the surface. This may cause loss of life, damage to environment, and tarnish the reputation of the company. In this paper, two potential pathways for reservoir fluid to reach the surface through annuli have been examined, and recommendations were provided to diagnose and manage annulus pressures within safe operating limits. Integrated well integrity assessment to diagnose the root-cause of annulus pressure involved using various tools to measure key parameters needed to make an accurate assessment of root-cause of annulus pressure. For example, thermal numerical models and lab tests were conducted to simulate thermal effects in the well and analyze annulus fluid samples, respectively. Furthermore, echometer was used to measure fluid-level in the annuli, whereas logging tools such as spectral noise, high-precision temperature etc. were used to identify source of any reservoir fluid ingress. Multiple diagnostic, surveillance and management workflows for outer and inner annuli have been developed. Experiences in implementing these workflows for hundreds of wells in the field have been described and lessons learned have been discussed. Special attention has been paid to the cases with confirmed or suspected lost barriers. Appropriate, cost-efficient levels of diagnostics have been selected and employed to ensure safe operations. Decision trees on how to manage wells with annulus pressures have been discussed, in particular related to planning and execution of pressure bleed-offs, annulus top-ups with heavier fluids, etc. Based on decision trees, cost-efficient levels of diagnostics have been selected and employed to ensure safe operations. This work provides insights on various tools to diagnose and cost-effectively manage the pressure in the annulus by combining the available tools and software. Company-specific annulus pressure management strategies have been developed and successfully employed to safely operate wells with annulus pressure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.